
iotagent-mosca Documentation
Release 0.2.0a1

Matheus Magalhaes

Oct 02, 2018

Contents:

1 Concepts 3
1.1 MQTT . 3
1.2 Kafka . 3

2 Operation 5
2.1 Configuration . 5
2.2 Receiving messages from DeviceManager via Kafka . 5
2.3 Sending messages to other components via Kafka . 6
2.4 Receiving messages from devices via MQTT . 7

3 How to build/update/translate documentation 9
3.1 Build . 9
3.2 Update workflow . 9

4 How does it work 11

5 How to build 13

6 How to run 15
6.1 How do I know if it is working properly? . 15

i

ii

iotagent-mosca Documentation, Release 0.2.0a1

IoT agents are responsible for receiving messages from physical devices (directly or through a gateway) and sending
them commands in order to configure them. This iotagent-mosca, in particular, receives messages via MQTT with
JSON payloads.

Contents: 1

https://opensource.org/licenses/GPL-3.0
https://hub.docker.com/r/dojot/iotagent-mosca/
https://travis-ci.org/dojot/iotagent-mosca

iotagent-mosca Documentation, Release 0.2.0a1

2 Contents:

CHAPTER 1

Concepts

1.1 MQTT

MQTT is a somewhat simple protocol: it follows a publish/subscriber paradigm and messages are exchanged using
topics. These topics are simple strings such as /admin/cafe/attrs. A publisher can, well, publish messages
by sending them to a MQTT broker using a particular topic and all the subscribers that are listening to that topic will
receive a copy of the message.

Subscribers can listen not only to specific topics, but also to topics with wildcards. For instance, one could use a
‘+’ to indicate that any token will match the subscribed topic, such as /admin/+/attrs - messages sent to both
/admin/cafe/attrs and /admin/4593/attrs, for instance, will be received by this subscriber. Another
possibility is to create a subscription to all remainder tokens in the topic, such as /admin/#. All messages sent to
topics beginning with /admin/ will be received by this subscriber.

1.2 Kafka

Kafka is, in fact, a project from the Apache Foundation. It is a messaging system that is similar to MQTT in the sense
that both are based on publisher/subscriber. Kafka is way more complex and robust - it deals with multiple subscribers
belonging to the same group (and performs load-balancing between them), stores and replays messages, and so on.
The side effect is that its clients are not that simple, which could be a heavy burden for tiny devices.

3

https://kafka.apache.org

iotagent-mosca Documentation, Release 0.2.0a1

4 Chapter 1. Concepts

CHAPTER 2

Operation

2.1 Configuration

iotagent-mosca configuration is pretty simple. These are the environment variables used by it:

• BACKEND_HOST, BACKEND_PORT: redis host and port to be used.

2.2 Receiving messages from DeviceManager via Kafka

Messages containing device operations should be in this format:

{
"event": "create",
"meta": {
"service": "admin"

},
"data": {
"id": "cafe",
"attrs" : {

}
}

}

These messages are related to device creation, update, removal and actuation. For creation and update operations, it
contains the device data model to be added or updated. For removal operation, it will contain only the device ID being
removed. The actuation operation will contain all attributes previously created with their respective values.

The documentation related to this message can be found in DeviceManager Messages.

5

http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/kafka-messages.html

iotagent-mosca Documentation, Release 0.2.0a1

2.2.1 Device configuration for iotagent-mosca

The following device attributes are considered by iotagent-mosca. All these attributes are of meta type.

Table 2.1: Device attributes for iotagent-mosca
Attribute Description Example
topic Topic to which the device will publish messages. /admin/efac/attrs

Example

The following message serves as an example of a device with all attributes used by iotagent-mosca.

{
"label": "Thermometer Template",
"attrs": [
{

"label": "topic",
"type": "meta",
"value_type": "string",
"static_value": "/agent/main/000BABC80F4A/devinfo"

},
{

"label": "temperature",
"type": "dynamic",
"value_type": "float"

},
{

"label": "reset",
"type": "actuator",
"value_type": "boolean"

}
]

}

2.3 Sending messages to other components via Kafka

When iotagent-mosca receives a new message from a particular device, it must publish the new data to other com-
ponents. The default subject used to publish this information is “device-data”. Check data-broker documentation to
check how these subjects are translated into Kafka topics.

The message sent by iotagent-mosca is like this one:

{
"metadata": {

"deviceid": "c6ea4b",
"tenant": "admin",
"timestamp": 1528226137452,
"templates": [2, 3]

},
"attrs": {

"humidity": 60
}

}

6 Chapter 2. Operation

https://github.com/dojot/data-broker

iotagent-mosca Documentation, Release 0.2.0a1

2.4 Receiving messages from devices via MQTT

Any message payload sent to iotagent-mosca must be in JSON format. Preferably, they should follow a simple key-
value structure, such as:

{
"speed": 100.0,
"weight": 50.2,
"id": "truck-001"

}

If more than one device is supposed to use the same topic, you should set the client ID in all messages sent by devices.
Its value should be service:ID, such as admin:efac.

Should the device send its messages using any other JSON scheme, the user could translate them into simple key-value
structures using flows, using flowbuilder for that.

2.4.1 Example

This example uses mosquitto_pub tool, available with mosquitto_clients package. To send a message to
iotagent-mosca via MQTT, just execute this command:

mosquitto_pub -h localhost -i "admin:efac" -t /device/data -m '{"temperature" : 10}'

This command will send the message containing one value for attribute speed. The device ID is efac and its service
is “admin”. -t flag sets the topic to which this message will be published and -i sets the client ID to be sent.

This command assumes that you are running iotagent-mosca in your machine (it also works if you use dojot’s docker-
compose).

2.4. Receiving messages from devices via MQTT 7

https://github.com/dojot/docker-compose
https://github.com/dojot/docker-compose

iotagent-mosca Documentation, Release 0.2.0a1

8 Chapter 2. Operation

CHAPTER 3

How to build/update/translate documentation

If you have a local clone of this repository and you want to change the documentation, then you should follow this
simple guide.

3.1 Build

The readable version of this documentation can be generated by means of sphinx. In order to do so, please follow the
steps below. Those are actually based off ReadTheDocs documentation.

pip install sphinx sphinx-autobuild sphinx_rtd_theme sphinx-intl
make html

For that to work, you must have pip installed on the machine used to build the documentation. To install pip on an
Ubuntu machine:

sudo apt-get install python-pip

To build the documentation in Brazilian Portuguese language, run the following extra commands:

sphinx-intl -c conf.py build -d locale
make html BUILDDIR=build/html-pt_BR O='-d build/doctrees/ -D language=pt_BR'

3.2 Update workflow

To update the documentation, follow the steps below:

1. Update the source files for the english version

2. Extract translatable messages from the english version

9

https://docs.readthedocs.io/en/latest/getting_started.html

iotagent-mosca Documentation, Release 0.2.0a1

make gettext

3. Update the message catalog (PO Files) for pt_BR language

sphinx-intl -c conf.py update -p build/gettext -l pt_BR

4. Translate the messages in the pt_BR language PO files

This workflow is based on the Sphinx i18n guide.

10 Chapter 3. How to build/update/translate documentation

http://www.sphinx-doc.org/en/stable/intl.html

CHAPTER 4

How does it work

iotagent-mosca depends on a Kafka broker, so that it can receive messages informing it about new devices (and, in
extension, about their updates and removals). It listens to device management topics on Kafka and for MQTT messages
using its internal broker implemented by Mosca library. For more information about the internals of this mechanism,
check iotagent-nodejs documentation.

11

https://github.com/dojot/iotagent-nodejs

iotagent-mosca Documentation, Release 0.2.0a1

12 Chapter 4. How does it work

CHAPTER 5

How to build

As this is a npm-based project, building it is as simple as

npm install

And that’s all.

13

iotagent-mosca Documentation, Release 0.2.0a1

14 Chapter 5. How to build

CHAPTER 6

How to run

As simple as:

node index.js

Remember that you should already have a Kafka node (with a zookeeper instance).

6.1 How do I know if it is working properly?

Simply put: you won’t. In fact you can implement a simple Kafka publisher to emulate the behaviour of a device
manager instance and a listener to check what messages it is generating. But it seems easier to get the real components
- they are not that hard to start and to use (given that you use dojot’s docker-compose). Check also DeviceManager
documentation for further information about how to create a new device.

15

https://github.com/dojot/docker-compose
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/

	Concepts
	MQTT
	Kafka

	Operation
	Configuration
	Receiving messages from DeviceManager via Kafka
	Sending messages to other components via Kafka
	Receiving messages from devices via MQTT

	How to build/update/translate documentation
	Build
	Update workflow

	How does it work
	How to build
	How to run
	How do I know if it is working properly?

