

DeviceManager

[image: License badge] [https://opensource.org/licenses/GPL-3.0] [image: Docker badge] [https://hub.docker.com/r/dojot/device-manager/]

The DeviceManager handles all operations related to creation, retrieval,
update and deletion of devices in dojot [https://github.com/dojot/dojot]. For more information on that,
check DeviceManager Concepts page.

Contents:

	DeviceManager concepts
	Device

	Template

	Using DeviceManager
	Creating templates and devices

	Removing templates and devices

	Sending actuation messages to devices

	REST API

	Internal messages
	Creation message

	Update message

	Removal message

	Actuation message

	How to build/update/translate documentation
	Build

	Update workflow

Dependencies

DeviceManager has the following dependencies:

	flask (including flask_sqlalchemy)

	psycopg2

	marshmallow

	requests

	gunicorn

	gevent

	json-logging-py

	kakfa-python

But you won’t need to worry about installing any of these - they are
automatically installed when starting DeviceManager. There must be,
though, a postgres instance accessible by DeviceManager.

How to run

If you really need to run DeviceManager as a standalone process (without
dojot’s wonderful docker-compose), you can execute these commands:

python setup.py develop
gunicorn device-manager.app:app

Keep in mind that running a standalone instance of DeviceManager misses
a lot of security checks (such as user identity checks, proper
multi-tenancy validations, and so on). In particular, every request sent
to DeviceManager needs an access token, which should be retrived from
auth [https://github.com/dojot/auth] component.

How to use it

There are a few concepts that must be understood to properly use
DeviceManager. Visit DeviceManager Concepts page to check them out.

This component listens to HTTP requests at port 5000 - all its endpoints
are documented in the API page.

IMPORTANT: If you are using all dojot’s components (for instance, using a deploy based on
docker-compose [https://github.com/dojot/docker-compose]), it is recommended to visit dojot documentation [http://dojotdocs.readthedocs.io/en/latest/apis.html]
to check the endpoints for all services (including DeviceManager’s)**

DeviceManager concepts

Here are the main concepts needed to correctly use DeviceManager. They are not
hard to understand, but they are essential to operate not only DeviceManager,
but the dojot platform as well.

Device

In dojot, a device is a digital representation of an actual device or gateway
with one or more sensors or of a virtual one with sensors/attributes inferred
from other devices.

Consider, for instance, an actual device with temperature and humidity sensors;
it can be represented into dojot as a device with two attributes (one for each
sensor). We call this kind of device as regular device or by its communication
protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their associated
physical ones, for instance, we can create one with higher level of information
of temperature (is becoming hotter or is becoming colder) whose values are
inferred from temperature sensors of other devices. This kind of device is
called virtual device.

The information model used for both “real” and virtual devices is as
following:

Table 1 Device structure

	Attribute

	Type and mode

	Description

	id

	String (read only)

	This is the identifier that will be used when referring to
this device.

	label

	String (read-write, required)

	An user label to identify this device more easily

	created

	DateTime (read-only)

	Device creation date

	updated

	DateTime (read-only)

	Device update date

	templates

	[String (template ID)] (read-write)

	List of template IDs to “assemble” this device (more on this on
‘Template’ section)

	attrs

	[Attributes] (read-only)

	Map of attributes currently set to this device.

The attrs attribute is, in fact, a map associating a template ID with an
attribute, such as:

{
 "attrs": {
 "1": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "this-is-a-sample-attribute",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 }
],
 "2": [
 {
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "this-is-another-sample-attribute",
 "value_type": "string",
 "type": "dynamic",
 "id": 4
 }
]
 }
}

This structure indicates that there are two attributes: one called
this-is-a-sample-attribute from template ID 1 and another one called
this-is-another-sample-attribute from template ID 2.

Table 2 Attribute structure

	Attribute

	Type and mode

	Description

	id

	integer (read-write)

	Attribute ID (automatically generated)

	label

	string (read-write, required)

	User label for this attribute

	created

	DateTime (read-only)

	Attribute creation date

	updated

	DateTime (read-only)

	Attribute update date

	type

	string (read-write, required)

	Attribute type (“static”, “dynamic”, “actuator”)

	value_type

	string (read-write, required)

	Attribute value type (“string”, “float”, “integer”, “geo”)

	static_value

	string (read-write)

	If this is a static attribute, which is its static value

	template_id

	string (read-write)

	From which template did this attribute come from.

All attributes that are read/write can be used when creating or updating the device.
All of them are returned (if that makes sense - for instance, static_value won’t
be returned when no value is set to it) when retrieving device data.

An example of such structure would be:

{
 "templates": [
 1,
 2
],
 "created": "2018-01-05T17:33:31.605748+00:00",
 "attrs": {
 "1": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 }
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "2": [
 {
 "static_value": "/admin/efac/attrs",
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "mqtt-topic",
 "value_type": "string",
 "type": "meta",
 "id": 4
 }
]
 },
 "id": "b7bd",
 "label": "device"
}

Template

All devices are created based on a template, which can be thought as a
model of a device. As “model” we could think of part numbers or product
models - one prototype from which devices are created. Templates in
dojot have one label (any alphanumeric sequence), a list of attributes
which will hold all the device emitted information, and optionally a few
special attributes which will indicate how the device communicates,
including transmission methods (protocol, ports, etc.) and message
formats.

In fact, templates can represent not only “device models”, but it can
also abstract a “class of devices”. For instance, we could have one
template to represent all themometers that will be used in dojot. This
template would have only one attribute called, let’s say, “temperature”.
While creating the device, the user would select its “physical
template”, let’s say TexasInstr882, and the ‘thermometer’ template.
The user would have also to add translation instructions in order to map
the temperature reading that will be sent from the device to a
“temperature” attribute.

In order to create a device, a user selects which templates are going to
compose this new device. All their attributes are merged together and
associated to it - they are tightly linked to the original template so
that any template update will reflect all associated devices.

The information model used for templates is:

Table 3 Template structure

	Attribute

	Type and mode

	Description

	id

	string (read-write)

	This is the identifier that will be used when referring to this template

	label

	string (read-write, required)

	An user label to identify this template more easily

	created

	DateTime (read-only)

	Template creation date

	updated

	DateTime (read-only)

	Template update date

	attrs

	[Attributes] (read-write)

	List of attributes currently set to this template - it’s the same as attributes from Device section.

An example of such structure would be:

{
 "created": "2018-01-05T15:41:54.803052+00:00",
 "attrs": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "id": 1,
 "label": "Sample Template"
}

All attributes that are read/write can be used when creating or updating the template.
All of them are returned (if that makes sense - for instance, static_value won’t
be returned when no value is set to it) when retrieving device data.

Using DeviceManager

Using DeviceManager is indeed simple: create a template with attributes
and then create devices using that template. That’s it. This page will
show how to do that.

All examples in this page consider that all dojot’s components are up
and running (check the
documentation [http://dojotdocs.readthedocs.io/] for how to do that).
All request will include a ${JWT} variable - this was retrieved from
auth [https://github.com/dojot/auth] component.

Creating templates and devices

Right off the bat, let’s retrieve a token from auth:

curl -X POST http://localhost:8000/auth \
-H 'Content-Type:application/json' \
-d '{"username": "admin", "passwd" : "admin"}'

{
 "jwt": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIU..."
}

This token will be stored in bash ${JWT} bash variable, referenced
in all requests.

Attention

Every request made with this token will be valid only for
the tenant (user “service”) associated with this token. For instance,
listing created devices will return only those devices which were
created using this tenant.

A template is, simply put, a model from which devices can be created.
They can be merged to build a single device (or a set of devices). It is
created by sending a HTTP request to DeviceManager:

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "label": "SuperTemplate",
 "attrs": [
 {
 "label": "temperature",
 "type": "dynamic",
 "value_type": "float"
 },
 {
 "label": "pressure",
 "type": "dynamic",
 "value_type": "float"
 },
 {
 "label": "model",
 "type": "static",
 "value_type" : "string",
 "static_value" : "SuperTemplate Rev01"
 }
]
}'

Supported type values are “dynamic”, “static” and “meta”. Supported
value_types are “float”, “geo” (for georeferenced data), “string”,
“integer”.

The answer is:

{
 "result": "ok",
 "template": {
 "created": "2018-01-05T15:41:54.803052+00:00",
 "attrs": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "id": 1,
 "label": "SuperTemplate"
 }
}

Let’s create one more template, so that we can see what happens when two
templates are merged.

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "label": "ExtraTemplate",
 "attrs": [
 {
 "label": "gps",
 "type": "dynamic",
 "value_type": "geo"
 }
]
}'

Which results in:

{
 "result": "ok",
 "template": {
 "created": "2018-01-05T15:47:02.993965+00:00",
 "attrs": [
 {
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "gps",
 "value_type": "geo",
 "type": "dynamic",
 "id": 4
 }
],
 "id": 2,
 "label": "ExtraTemplate"
 }
}

Let’s check all templates we’ve created so far.

curl -X GET http://localhost:8000/template -H "Authorization: Bearer ${JWT}"

{
 "templates": [
 {
 "created": "2018-01-05T15:41:54.803052+00:00",
 "attrs": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "id": 1,
 "label": "SuperTemplate"
 },
 {
 "created": "2018-01-05T15:47:02.993965+00:00",
 "attrs": [
 {
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "gps",
 "value_type": "geo",
 "type": "dynamic",
 "id": 4
 }
],
 "id": 2,
 "label": "ExtraTemplate"
 }
],
 "pagination": {
 "has_next": false,
 "next_page": null,
 "total": 1,
 "page": 1
 }
}

Now devices can be created using these two templates. Such request would
be:

curl -X POST http://localhost:8000/device \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "templates": [
 "1",
 "2"
],
 "label": "device"
}'

The result is:

{
 "device": {
 "templates": [
 1,
 2
],
 "created": "2018-01-05T17:33:31.605748+00:00",
 "attrs": {
 "1": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "2": [
 {
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "gps",
 "value_type": "geo",
 "type": "dynamic",
 "id": 4
 }
]
 },
 "id": "b7bd",
 "label": "device"
 },
 "message": "device created"
}

Notice how the resulting device is structured: it has a list of related
templates (template attribute) and each of its attributes are
separated by template ID: temperature, pressure and model
are inside attribute 1 (ID of the first created template) and
gps is inside attribute 2 (ID of the second template). The new
device ID can be found in the id attribute, which is b7bd.

A few considerations must be made:

	If the templates used to compose this new device had attributes with
the same name, an error would be generated and the device would not
be created.

	If any of the related templates are removed, all its attributes will
also be removed from the devices that were created using it. So be
careful.

Let’s retrieve this new device:

curl -X GET http://localhost:8000/device -H "Authorization: Bearer ${JWT}"

This request will list all created devices for the tenant.

{
 "pagination": {
 "has_next": false,
 "next_page": null,
 "total": 1,
 "page": 1
 },
 "devices": [
 {
 "templates": [
 1,
 2
],
 "created": "2018-01-05T17:33:31.605748+00:00",
 "attrs": {
 "1": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "2": [
 {
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "gps",
 "value_type": "geo",
 "type": "dynamic",
 "id": 4
 }
]
 },
 "id": "b7bd",
 "label": "device"
 }
]
}

Removing templates and devices

Removing templates and devices is also very simple. Let’s remove the
device created previously:

curl -X DELETE http://localhost:8000/device/b7bd -H "Authorization: Bearer ${JWT}"

{
 "removed_device": {
 "templates": [
 1,
 2
],
 "created": "2018-01-05T17:33:31.605748+00:00",
 "attrs": {
 "1": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "2": [
 {
 "template_id": "2",
 "created": "2018-01-05T15:47:02.995541+00:00",
 "label": "gps",
 "value_type": "geo",
 "type": "dynamic",
 "id": 4
 }
]
 },
 "id": "b7bd",
 "label": "device"
 },
 "result": "ok"
}

Removing templates is also simple:

curl -X DELETE http://localhost:8000/template/1 -H "Authorization: Bearer ${JWT}"

{
 "removed": {
 "created": "2018-01-05T15:41:54.803052+00:00",
 "attrs": [
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.840116+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-05T15:41:54.882169+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "SuperTemplate Rev01",
 "created": "2018-01-05T15:41:54.883507+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 }
],
 "id": 1,
 "label": "SuperTemplate"
 },
 "result": "ok"
}

These are the very basic operations performed by DeviceManager. All
operations can be found in API documentation.

Sending actuation messages to devices

You can invoke any device actuation via DeviceManager. In order to do so, you
have to create some “actuator” attributes in a template. They represent a
function exposed by the physical device, such as setting the target
temperature, making a step-motor move a bit, resetting the device, etc. Let’s
create a very similar template from Creating templates and devices section
and call it a ‘Thermostat’:

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "label": "Thermostat",
 "attrs": [
 {
 "label": "temperature",
 "type": "dynamic",
 "value_type": "float"
 },
 {
 "label": "pressure",
 "type": "dynamic",
 "value_type": "float"
 },
 {
 "label": "model",
 "type": "static",
 "value_type" : "string",
 "static_value" : "Thermostat Rev01"
 },
 {
 "label": "target_temperature",
 "type": "actuator",
 "value_type": "float"
 }
]
}'

Note that we have one more attribute - target_temperature - to which we
will send messages to set the target temperature. This attribute could also
have the same name as temperature with no side-effects whatsoever. If an
actuation request is received by dojot, only actuator-type attribute are
considered.

This request should give an answer like this:

{
 "result": "ok",
 "template": {
 "created": "2018-01-30T12:16:51.423705+00:00",
 "label": "Thermostat",
 "attrs": [
 {
 "template_id": "1",
 "created": "2018-01-30T12:16:51.427113+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 },
 {
 "template_id": "1",
 "created": "2018-01-30T12:16:51.429224+00:00",
 "label": "pressure",
 "value_type": "float",
 "type": "dynamic",
 "id": 2
 },
 {
 "static_value": "Thermostat Rev01",
 "created": "2018-01-30T12:16:51.430194+00:00",
 "label": "model",
 "value_type": "string",
 "type": "static",
 "id": 3,
 "template_id": "1"
 },
 {
 "template_id": "1",
 "created": "2018-01-30T12:16:51.430870+00:00",
 "label": "target_temperature",
 "value_type": "float",
 "type": "actuator",
 "id": 4
 }
],
 "id": 1
 }
}

Creating a device based on it is no different than before:

curl -X POST http://localhost:8000/device \
 -H "Authorization: Bearer ${JWT}" \
 -H 'Content-Type:application/json' \
 -d ' {
 "templates": [
 "1"
],
 "label": "device"
 }'

This gives back the following data:

{
 "message": "devices created",
 "devices": [
 {
 "id": "356d",
 "label": "device"
 }
]
}

To send a configuration message to the device, you should send a request like
this:

curl -X PUT http://localhost:8000/device/356d/actuate \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "attrs": {
 "target_temperature" : 10.6
 }
}'

The request payload contains only the following attribute:

	attrs: All the attributes and their respective values that will be configured
on the device. Each value can be as simple as a float or a string, or it could
hold a more complex structure, such as an object.

Remember that the attribute must be an actuator for this request to succeed.
If not, a message like the following one is returned:

{
 "status": "some of the attributes are not configurable",
 "attrs": [
 "pressure"
]
}

The request will be published via Kafka. All elements that are interested in
device notifications (such as IoT agents), will received it. What should be
done with it is up to the component that processes this message. Check the
documentation of each component (in particular, from IoT agents) to check what
is done with it.

REST API

All APIs are available in Github pages API description [https://dojot.github.io/device-manager/apiary_v0.3.0.html], which is automatically generated from
this file.

Internal messages

There are some messages that are published by DeviceManager through Kafka.
These messages are notifications of device management operations, and they can
be consumed by any component interested in them, such as IoT agents.

Table 4 Kafka messages

	Event

	Service

	Message type

	Device creation

	dojot.device-manager.device

	Creation message

	Device update

	dojot.device-manager.device

	Update message

	Device removal

	dojot.device-manager.device

	Removal message

	Device actuation

	dojot.device-manager.device

	Actuation message

Creation message

This message is published whenever a new device is created.
Its payload is a simple JSON:

{
 "event": "create",
 "meta": {
 "service": "admin"
 },
 "data": {
 "id": "efac",
 "label" : "Device 1",
 "templates" : [1, 2, 3],
 "attrs" : {

 },
 "created" : "2018-02-06T10:43:40.890330+00:00"
 }
}

And its attributes are:

	event (string): “create”

	meta: Meta information about the message

	service (string): Tenant associated to this device

	data: device data structure

	id (string): Device ID

	attrs: Device attributes. This field is as described in DeviceManager concepts

Update message

This message is published whenever a new device is updated.
Its payload looks very similar to device creation:

{
 "event": "update",
 "meta": {
 "service": "admin"
 },
 "data": {
 "id": "efac",
 "label" : "Device 1",
 "templates" : [1, 2, 3],
 "attrs" : {

 },
 "created" : "2018-02-06T10:43:40.890330+00:00"
 }
}

	event (string): “update”

	meta: Meta information about the message

	service (string): Tenant associated to this device

	data: device new data structure

	id (string): ID of the device being updated

	attrs: Device attributes. This field is as described in DeviceManager concepts

Removal message

This message is published whenever a device is removed.
Its payload is:

{
 "event": "remove",
 "meta": {
 "service": "admin"
 },
 "data": {
 "id": "efac"
 }
}

	event (string): “remove”

	meta: Meta information about the message

	service (string): Tenant associated to this device

	data: device data

	id (string): ID of the device being removed

Actuation message

This message is published whenever a device must be configured.
The payload is:

{
 "event": "actuate",
 "meta": {
 "service": "admin"
 },
 "data" : {
 "id" : "efac",
 "attrs": {
 "reset" : 1,
 "step-motor" : "+45"
 }
 }
}

	event (string): “actuate”

	meta: Meta information about the message

	service (string): Tenant associated to this device

This message should be forwarded to the device. It can contain more attributes
than the ones specified by DeviceManager. For instance, a thermostat could be
configured with the following message:

{
 "event": "actuate",
 "meta": {
 "service": "admin"
 },
 "data" : {
 "id" : "efac",
 "attrs": {
 "target_temperature" : 23.5
 }
 }
}

The attribute actually used by the device would be “target_temperature” so that
it can adjust correctly the temperature. It’s up to the receiver of this
message (an IoT agent, for instance) to properly send the configuration to the
device.

How to build/update/translate documentation

If you have a local clone of this repository and you want to change the
documentation, then you should follow this simple guide.

Build

The readable version of this documentation can be generated by means of
sphinx. In order to do so, please follow the steps below. Those are
actually based off ReadTheDocs documentation [https://docs.readthedocs.io/en/latest/getting_started.html].

pip install sphinx sphinx-autobuild sphinx_rtd_theme sphinx-intl
export READTHEDOCS_VERSION=latest
make html

The `READTHEDOCS_VERSION` environment variable should be set to the component
version being built, such as `latest` or `0.2.0`. In the automated build process from readthedocs, this exact variable will be set as the name of the branch/tag being built.

For that to work, you must have pip installed on the machine used to
build the documentation. To install pip on an Ubuntu machine:

sudo apt-get install python-pip

To build the documentation in Brazilian Portuguese language, run the
following extra commands:

sphinx-intl -c conf.py build -d locale
make html BUILDDIR=build/html-pt_BR O='-d build/doctrees/ -D language=pt_BR'

Update workflow

To update the documentation, follow the steps below:

	Update the source files for the english version

	Extract translatable messages from the english version

make gettext

	Update the message catalog (PO Files) for pt_BR language

sphinx-intl -c conf.py update -p build/gettext -l pt_BR

	Translate the messages in the pt_BR language PO files

This workflow is based on the Sphinx i18n guide [http://www.sphinx-doc.org/en/stable/intl.html].

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 DeviceManager

 		
 DeviceManager concepts

 		
 Device

 		
 Template

 		
 Using DeviceManager

 		
 Creating templates and devices

 		
 Removing templates and devices

 		
 Sending actuation messages to devices

 		
 REST API

 		
 Internal messages

 		
 Creation message

 		
 Update message

 		
 Removal message

 		
 Actuation message

 		
 How to build/update/translate documentation

 		
 Build

 		
 Update workflow

_static/up-pressed.png

_static/up.png

