

dojot documentation

This is the high-level documentation for dojot IoT platform developed by CPqD.
This platform aims to provide the application and device developers with a more
concise and integrated interaction, while benefiting for a highly customizable
and efficient infrastructure.

Contents:

	Architecture
	Components

	Infrastructure

	Communications

	User Guide
	Who should read this

	Getting Started

	dojot basics

	Integrating physical devices

	Components and APIs
	Components

	Exposed APIs

	Kafka messages

	Installation Guide
	Installation - Docker compose

	Frequently Asked Questions
	General

	Usage

	Devices

	Data Flows

	Applications

Architecture

This document describes the current architecture that guides the platform
implementation, detailing the components that comprise the solution, as well as
their functionalities and how each of them contribute to the platform as a
whole.

While a brief explanation of each component is provided, this high level
description does not explain (or aims to explain) the minutia of each
component’s implementation. For that, please refer to each component’s own
documentation.

Table of Contents

	Components

	Kafka + data-broker + NGSI

	DeviceManager

	IoT Agent

	User Authorization Service

	flowbroker

	History

	Logging and Auditing Service

	Kong API Gateway

	GUI

	Elastic Service Controller

	Alarm Management

	Image manager

	Infrastructure

	Communications

Components

dojot was designed to make fast solution prototyping possible, providing a
platform that’s easy to use, scalable and robust. Its internal architecture
makes use of many well-known open-source components with others designed and
implemented by dojot team. This architecture is described on
Fig. 1.

[image: Revised *dojot* Architecture]
Fig. 1 Current Architecture

Using dojot is as follows: a user configures IoT devices through the GUI or
directly using the REST APIs provided by the API Gateway. Data processing flows
might be also configured - these entities can perform a variety of actions,
such as generate notifications when a particular device attribute reaches a
certain threshold or save all data generated by a device onto an external
database. As devices start sending their readings to dojot, the user might want
to receive these readings via notifications generated by subscriptions,
consolidate all data into virtual devices, gather all data from historical
database, and so on. These features can be used through REST APIs - these are
the basic building blocks that any application based on dojot should use. dojot
GUI provides an easy way to perform management operations for all entities
related to the platform (users, devices, templates and flows) and can also be
used to check if everything is working fine.

The user contexts are isolated and there is no data sharing, the access
credentials are validated by the authorization service for each and every
operation (API Request). Once devices are configured, the IoT Agent is capable
of mapping the data received from devices, encapsulated on MQTT for example,
and send them to the context broker for internal distribution, reaching, for
instance, the history service so it can persist the data on a database. If
certain conditions are matched when rules are being processed, a new event is
generated and sent to the broker service to be redistributed to the interested
services.

For more information about what’s going on with dojot, you should take a look
at dojot GitHub repository [https://github.com/dojot]. There you’ll find all
components used in dojot.

Each one of the components that are part of the architecture are briefly
described on the sub-sections below.

Kafka + data-broker + NGSI

Apache Kafka is a distributed messaging platform that can be used by
applications which need to stream data or consume/produce data pipelines. In
comparison with other open-source messaging solutions, Kafka seems to be more
appropriate to fulfil dojot’s architectural requirements (responsibility
isolation, simplicity, and so on).

In Kafka, a specialized topics structure is used to insure isolation between
different users and applications data, enabling a multi-tenant infrastructure.

The flow-broker service makes use of an in-memory database for efficiency. It
adds context to Apache Kafka, making it possible that internal or even external
services are able to subscribe or query data based on context. Flow-broker is
also a distributed service to avoid it being a single point of failure or even
a bottleneck for the architecture.

To keep a certain level of compatibility with NGSI-compatible components, it is
possible to build an element that offers a NGSI interface for such components.

DeviceManager

DeviceManager is a core entity which is responsible for keeping device and
templates data models. It is also responsible for publishing any updates to all
interested components (namely IoT agents, history and subscription manager)
through Kafka.

This service is stateless, having its data persisted to a database, with data
isolation for users and applications, making possible a multi-tenant
architecture for the middleware.

IoT Agent

An IoT agent is an adaptation service between physical devices and dojot’s
core components. It could be understood as a device driver for a set of
devices. The dojot platform can have multiple iot-agents, each one of them
being specialized in a specific protocol like, for instance, MQTT/JSON,
CoAP/LWM2M and HTTP/JSON.

It is also responsible to ensure that it communicates with devices using secure
channels.

User Authorization Service

This service is responsible for managing user profiles and access control.
Basically any API call that reaches the platform via the API Gateway is
validated by this service.

To be able to deal with a high volume of authorization calls, it uses caching,
it is stateless and it is scalable horizontally. Its data is stored on a
database.

flowbroker

This service provides mechanisms to build data processing flows to perform a
set of actions. These flows can be extended using external processing blocks
(which can be added using REST APIs).

History

The History component works as a pipeline for data and events that must be
persisted on a database. The data is converted into an storage structure and is
sent to the corresponding database.

For internal storage, the MongoDB non-relational database is being used, it
allows a Sharded Cluster configuration that may be required according to the
use case.

The data may also be directed to databases that are external do the dojot
platform, requiring only a proper configuration of Logstash and the data model
to be used.

Logging and Auditing Service

All the services that are part of the dojot platform can generate usage metrics
of its resources that can be used by a logging and auditing service,
which process this registers and summarize then based on users and
applications.

The consolidated data is presented back to the services, allowing then, for
example, to expose this data to the user via a graphical interface, to limit
the usage of the system based on resource consumption and quotas associated
with users or even to be used by billing services to charge users for the
utilization of the platform.

Such components are currently in development.

Kong API Gateway

The Kong API Gateways is used as the entry point for applications and external
services to reach the services that are internal to the dojot platform,
resulting in multiple advantages like, for instance, single access point and
ease when applying rules over the API calls like traffic rate limitation and
access control.

GUI

The Graphical User Interface in dojot is responsible for providing responsive
interfaces to manage the platform, including functionalities like:

	User Profile Management: define profiles and the API permission
associated to those profiles

	User Management: Creation, Visualization, Edition and Deletion Operations

	Applications Management: Creation, Visualization, Edition and Deletion
Operations

	Device Models Management: Creation, Visualization, Edition and Deletion
Operations

	Devices Management: Creation, Visualization (real time data), Edition and
Deletion Operations

	Processing Flows Management: Creation, Visualization, Edition and
Deletion Operations

Elastic Service Controller

This is a service specialized for cloud environments, that is capable of
monitoring the utilization of the platform, being able to increase or decrease
its storage and processing capacity in an dynamic and automatic fashion to
adapt to the variability on the demand.

This controller depends that the dojot platform services are horizontally
scalable, as well as the databases must be clusterizable, which match with the
adopted architecture.

This component is currently scheduled for development.

Alarm Management

This component is responsible for handling alarms generated by dojot’s internal
components, such as IoT agents, Device Manager, and so on.

Image manager

This component is responsible for device image storage and retrieval.

Infrastructure

A few extra components are used in dojot that were not shown in
Fig. 1. They are:

	postgres: this database is used to persist data from many components, such as
Device Manager.

	redis: in-memory database used as cache in many components, such as service
orchestrator, subscription manager, IoT agents, and so on. It is very light
and easy to use.

	rabbitMQ: message broker used in service orchestrator in order to implement
action flows related that should be applied to messages received from
components.

	mongo database: widly used database solution that is easy to use and doesn’t
add a considerable access overhead (where it was employed in dojot).

	zookeeper: keeps replicated services within a cluster under control.

Communications

All components communicate with each other in two ways:

	Using HTTP requests: if one component needs to retrieve data from other one,
say an IoT agent needs the list of currently configured devices from Device
Manager, it can send a HTTP request to the appropriate component.

	Using Kafka messages: if one component needs to send new information about a
resource controlled by it (such as new devices created in Device Manager),
the component may publish this data through Kafka. Using this mechanism, any
other component that is interested in such information needs only to listen
to a particular topic to receive it. Note that this mechanism doesn’t make
any hard associations between components. For instance, Device Manager
doesn’t know which components need its information, and an IoT agent doesn’t
need to know which component is sending data through a particular topic.

User Guide

This document provides information on how to use dojot from a device developer
or application developer point of view.

Table of Contents

	Who should read this

	Getting Started

	dojot basics

	User authentication

	Devices and templates

	Flows

	Step-by-step device management

	Getting access token

	Device creation

	Sending messages

	Checking historical data

	Integrating physical devices

Who should read this

	Users that want a deeper look at how dojot works;

	Application developers.

Getting Started

To start, please follow dojot’s installation guide in
Installation Guide. There you should find how to properly download a
working copy of the components, how to minimally configure them, how to start
them up and how to check whether they are working.

dojot basics

Before using dojot, you should be familiar with some basic operations and
concepts. They are very simple to understand and use, but without them, all
operations might become obscure and senseless.

In the next section, there is an explanation of a few basic entities in dojot:
devices, templates and flows. With these concepts in mind, we present a small
tutorial to how to use them in dojot - it only covers API access.

If you want more information on how dojot works internally, you should checkout
the Architecture to get acquainted with all internal components.

User authentication

All HTTP requests supported by dojot are sent to the API gateway. In order to
control which user should access which endpoints and resources, dojot makes
uses of JSON Web Token [https://tools.ietf.org/html/rfc7519] (a useful tool is jwt.io [https://jwt.io/]) which encodes things
like (not limited to these):

	User identity

	Validation data

	Token expiration date

The component responsible for user authentication is auth [https://github.com/dojot/auth]. You can find a
tutorial of how to authenticate a user and how to get an access token in auth
documentation [http://dojotdocs.readthedocs.io/projects/auth/].

Devices and templates

In dojot, a device is a digital representation of an actual device or gateway
with one or more sensors or of a virtual one with sensors/attributes inferred
from other devices. Throughout the documentation, this kind of device will be
called simply as ‘device’. If the actual device must be referenced, we’ll be
calling it as ‘physical device’.

Consider, for instance, a physical device with temperature and humidity
sensors; it can be represented in dojot as a device with two attributes (one
for each sensor). We call this kind of device as regular device or by its
communication protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their physical
counterparts, for instance, we can create one with higher level of information
of temperature (is becoming hotter or is becoming colder) whose values are
inferred from temperature sensors of other devices. This kind of device is
called virtual device.

All devices are created based on a template, which can be thought as a model
of a device. As “model” we could think of part numbers or product models - one
prototype from which devices are created. Templates in dojot have one label
(any alphanumeric sequence), a list of attributes which will hold all the
device emitted information, and optionally a few special attributes which will
indicate how the device communicates, including transmission methods (protocol,
ports, etc.) and message formats.

In fact, templates can represent not only “device models”, but it can also
abstract a “class of devices”. For instance, we could have one template to
represent all thermometers that will be used in dojot. This template would have
only one attribute called, let’s say, “temperature”. While creating the device,
the user would select its “physical template”, let’s say TexasInstr882, and
the ‘thermometer’ template. The user would have also to add translation
instructions (implemented in terms of data flows, build in flowbuilder) in
order to map the temperature reading that will be sent from the device to a
“temperature” attribute.

In order to create a device, a user selects which templates are going to
compose this new device. All their attributes are merged together and
associated to it - they are tightly linked to the original template so that any
template update will reflect all associated devices.

The component responsible for managing devices (both real and virtual) and
templates is DeviceManager [https://github.com/dojot/device-manager]. DeviceManager documentation [http://dojotdocs.readthedocs.io/projects/DeviceManager/] explains in more
depth all the available operations.

Flows

A flow is a sequence of blocks that process a particular event or device
message. It contains:

	entry point: a block representing what is the trigger to start a particular
flow;

	processing blocks: a set of blocks that perform operations using the event.
These blocks may or may not use the contents of such event to further process
it. The operations might be: testing content for particular values or ranges,
geo-positioning analysis, changing message attributes, perform operations on
external elements, and so on.

	exit point: a block representing where the resulting data should be forwarded
to. This block might be a database, a virtual device, an external element,
and so on.

The component responsible for dealing with such flows is flowbroker [https://github.com/dojot/flowbroker].

Step-by-step device management

This section provides a complete step-by-step tutorial of how to create,
update, send messages to and check historical data of a device. We will create
a simple device with only one attribute, send a few messages emulating the
physical device and check the historical data for the only attribute this
device has.

Also, this tutorial assumes that you are using docker-compose [https://github.com/dojot/docker-compose], which has all
the necessary components to properly run dojot (so all API requests will be
sent to localhost:8000).

Getting access token

As said in User authentication, all requests must contain a valid access
token. You can generate a new token by sending the following request:

curl -X POST http://localhost:8000/auth \
 -H 'Content-Type:application/json' \
 -d '{"username": "admin", "passwd" : "admin"}'

{"jwt": "eyJ0eXAiOiJKV1QiL..."}

If you want to generate a token for other user, just change the username and
password in the request payload. The token (“eyJ0eXAiOiJKV1QiL…”) should be
used in every HTTP request sent to dojot in a special header. Such request
would look like:

curl -X GET http://localhost:8000/device \
 -H "Authorization: Bearer eyJ0eXAiOiJKV1QiL..."

Remember that the token must be set in the request header as a whole, not parts
of it. In the example only the first characters are shown for the sake of
simplicity. All further requests will use a bash variable called bash
${JWT}, which contains the token got from auth component.

Device creation

In order to properly configure a physical device in dojot, you must first
create its representation in the platform. The example presented here is just a
small part of what is offered by DeviceManager. For more information, check the
DeviceManager how-to [http://dojotdocs.readthedocs.io/projects/DeviceManager/en/0.2.0/using-device-manager.html#using-devicemanager] for more detailed instructions.

First of all, let’s create a template for the device - all devices are based
off of a template, remember.

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "label": "Thermometer Template",
 "attrs": [
 {
 "label": "temperature",
 "type": "dynamic",
 "value_type": "float"
 }
]
}'

This request should give back this message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 {
 "result": "ok",
 "template": {
 "created": "2018-01-25T12:30:42.164695+00:00",
 "data_attrs": [
 {
 "template_id": "1",
 "created": "2018-01-25T12:30:42.167126+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 }
],
 "label": "Thermometer Template",
 "config_attrs": [],
 "attrs": [
 {
 "template_id": "1",
 "created": "2018-01-25T12:30:42.167126+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 }
],
 "id": 1
 }
 }

Note that the template ID is 1 (line 27).

To create a template based on it, send the following request to dojot:

	1
2
3
4
5
6
7
8
9

	curl -X POST http://localhost:8000/device \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
 "templates": [
 "1"
],
 "label": "device"
}'

The template ID list on line 6 contains the only template ID configured so far.
To check out the configured device, just send a GET request to /device:

curl -X GET http://localhost:8000/device -H "Authorization: Bearer ${JWT}"

Which should give back:

{
 "pagination": {
 "has_next": false,
 "next_page": null,
 "total": 1,
 "page": 1
 },
 "devices": [
 {
 "templates": [
 1
],
 "created": "2018-01-25T12:36:29.353958+00:00",
 "attrs": {
 "1": [
 {
 "template_id": "1",
 "created": "2018-01-25T12:30:42.167126+00:00",
 "label": "temperature",
 "value_type": "float",
 "type": "dynamic",
 "id": 1
 }
]
 },
 "id": "0998",
 "label": "device_0"
 }
]
}

Sending messages

So far we got an access token and created a template and a device based on it.
In an actual deployment, the physical device would send messages to dojot with
all its attributes and their current values. For this tutorial we will send
MQTT messages by hand to the platform, emulating such physical device. For
that, we will use mosquitto_pub from Mosquitto project.

Attention

Some Linux distributions, Ubuntu in particular, have two packages for
mosquitto [https://projects.eclipse.org/projects/technology.mosquitto] - one containing tools to access it (i.e. mosquitto_pub and
mosquitto_sub for publishing messages and subscribing to topics) and
another one containing the MQTT broker. In this tutorial, only the tools
are going to be used. Please check if MQTT broker is not running before
starting dojot (by running commands like ps aux | grep mosquitto).

The default message format used by dojot is a simple key-value
JSON (you could translate any message format to this scheme using flows, though),
such as:

{
 "temperature" : 10.6
}

Let’s send this message to dojot:

mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 10.6}'

If there is no output, the message was sent to MQTT broker.

As noted in the FAQ, there are some considerations
regarding MQTT topics:

	If you don’t define any topic in device template, it will assume the pattern
/<service-id>/<device-id>/attrs (for instance: /admin/efac/attrs).
This should be the topic to which the device will publish its information to.

	If you do define a topic in device template, then your device should publish
its data to it and set the client-id parameter. It should follow the
following pattern: <service>:<deviceid>, such as admin:efac.

	MQTT payload must be a JSON with each key being an attribute of the dojot
device, such as:

{ "temperature" : 10.5,"pressure" : 770 }

For more information on how dojot deals with data sent from devices, check the
Integrating physical devices section.

Checking historical data

In order to check all values that were sent from a device for a particular
attribute, you could use the history APIs [https://dojot.github.io/history-ws/apiary_0.2.0.html]. Let’s first send a few other
values to dojot so we can get a few more interesting results:

mosquitto_pub -t /admin/3bb9/attrs -m '{"temperature": 36.5}'
mosquitto_pub -t /admin/3bb9/attrs -m '{"temperature": 15.6}'
mosquitto_pub -t /admin/3bb9/attrs -m '{"temperature": 10.6}'

To retrieve all values sent for temperature attribute of this device:

curl -X GET \
 -H 'Authorization: Bearer eyJhbGciOiJIUzI1NiIsIn...' \
 "http://localhost:8000/history/device/3bb9/history?lastN=3&attr=temperature"

The history endpoint is built from these values:

	.../device/3bb9/...: the device ID is 3bb9 - this is retrieved from
the id attribute from the device

	.../history?lastN=3&attr=temperature: the requested attribute is
temperature and it should get the last 3 values. More operators are available
in history APIs [https://dojot.github.io/history-ws/apiary_0.2.0.html].

The request should result in the following message:

[
 {
 "device_id": "3bb9",
 "ts": "2018-03-22T13:47:07.050000Z",
 "value": 10.6,
 "attr": "temperature"
 },
 {
 "device_id": "3bb9",
 "ts": "2018-03-22T13:46:42.455000Z",
 "value": 15.6,
 "attr": "temperature"
 },
 {
 "device_id": "3bb9",
 "ts": "2018-03-22T13:46:21.535000Z",
 "value": 36.5,
 "attr": "temperature"
 }
]

This message contains all previously sent values.

Integrating physical devices

If you want to integrate your device within dojot, it must be able to send
messages to the platform. There are two ways to do that:

	Use one of the available IoT agents: currently, there is support for
MQTT-based devices. If your project is using (or allows changing to) this
protocol, then it would suffice to check if the device is sending its data
using a simple key/value JSON. If it isn’t, then you might want to use
iotagent-mosca (check iotagent-mosca [https://github.com/dojot/iotagent-mosca] documentation to check out how to do
that). If it is indeed sending key/value JSON messages, then it can send its
messages to dojot’s broker and it will be recognized by the platform.

	Create a new IoT agent to support the protocol used by the device: if your
device is using another protocol that is not yet supported, then it might be
a good idea to implement a new IoT agent. It’s not that hard, but there are a
few details that must be taken into account. To help developers to do such
thing, there is the iotagent-nodejs [https://github.com/dojot/iotagent-nodejs] library which deals with most
internal mechanisms and messages - check its documentation to know more.

After your device is able to communicate with dojot, you can start using it as
described in Step-by-step device management.

Components and APIs

Components

Table 1 Components

	Component

	GitHub repository

	Documentation

	mongodb

	
	mongodb documentation [https://docs.mongodb.com/manual/]

	postgres

	
	postgres documentation [https://www.postgresql.org/docs/]

	Kong API gateway

	
	Kong documentation [https://getkong.org/docs/]

	redis

	
	Redis documentation [https://redis.io/documentation]

	zookeeper

	
	Zookeeper documentation [https://zookeeper.apache.org/documentation.html]

	Kafka

	
	Kafka documentation [http://kafka.apache.org/documentation/]

	auth

	GitHub - auth [https://github.com/dojot/auth]

	readthedocs - auth [http://dojotdocs.readthedocs.io/projects/auth/en/0.2.0/]

	History

	GitHub - history-ws [https://github.com/dojot/history-ws]

	

	DeviceManager

	GitHub - DeviceManager [https://github.com/dojot/device-manager]

	readthedocs - DeviceManager [http://dojotdocs.readthedocs.io/projects/DeviceManager/en/0.2.0/]

	Image manager

	GitHub - image-manager

	

	GUI

	GitHub - GUI [https://github.com/dojot/gui]

	

	Flow broker

	GitHub - flowbroker [https://github.com/dojot/flowbroker]

	

	Data broker

	GitHub - data-broker [https://github.com/dojot/data-broker]

	

	iotagent-mosca

	GitHub - iotagent-mosca [https://github.com/dojot/iotagent-mosca]

	

	EJBCA-REST

	GitHub - EJBCA-REST [https://github.com/dojot/ejbca-rest]

	

	Alarm manager

	GitHub - alarm-manager [https://github.com/dojot/alarm-manager]

	

Exposed APIs

Table 2 APIs
 :header-rows: 1

	Endpoint

	Purpose

	Component API

	Repository

	/device

	Device management

	API - DeviceManager [https://dojot.github.io/device-manager/apiary_0.2.0.html]

	GitHub - DeviceManager [https://github.com/dojot/device-manager]

	/template

	Template management

	API - DeviceManager [https://dojot.github.io/device-manager/apiary_0.2.0.html]

	GitHub - DeviceManager [https://github.com/dojot/device-manager]

	/flows

	Flow management

	API - flowbroker [https://dojot.github.io/flowbroker/apiary_0.2.0.html]

	GitHub - flowbroker [https://github.com/dojot/flowbroker]

	/auth

	User authentication

	API - auth [https://dojot.github.io/auth/apiary_0.2.0.html]

	GitHub - auth [https://github.com/dojot/auth]

	/auth/revoke

	User authentication

	API - auth [https://dojot.github.io/auth/apiary_0.2.0.html]

	GitHub - auth [https://github.com/dojot/auth]

	/auth/user

	User authentication

	API - auth [https://dojot.github.io/auth/apiary_0.2.0.html]

	GitHub - auth [https://github.com/dojot/auth]

	/history

	Device historical data

	API - history-ws [https://dojot.github.io/history-ws/apiary_0.2.0.html]

	GitHub - history-ws [https://github.com/dojot/history-ws]

	/metric

	Context broker

	API - data-broker [https://dojot.github.io/data-broker/apiary_0.2.0.html]

	GitHub - data-broker [https://github.com/dojot/data-broker]

	/gui

	Graphical User Interface

	
	GitHub - GUI [https://github.com/dojot/gui]

	/sign

	Public key signing

	API - EJBCA-REST [https://dojot.github.io/ejbca-rest/apiary_0.2.0.html]

	GitHub - EJBCA-REST [https://github.com/dojot/ejbca-rest]

	/ca

	Certification-Auth. functions

	API - EJBCA-REST [https://dojot.github.io/ejbca-rest/apiary_0.2.0.html]

	GitHub - EJBCA-REST [https://github.com/dojot/ejbca-rest]

	/image

	Device image management

	API - image-manager [https://dojot.github.io/image-manager/apiary_0.2.0.html]

	GitHub - image-manager

The API gateway used in dojot reroutes some of these endpoints so that they
become uniform: all of them are accessible through the same port (default is
TCP port 8000) and have the same naming scheme. Each component, though, might
have something different in its configuration and API documentation. The
following table shows which endpoint exposed by the API gateway is mapped to
which component endpoint.

Table 3 Original endpoints

	Service

	Original endpoint

	Endpoint

	DeviceManager

	host:5000/device

	host:8000/device

	DeviceManager

	host:5000/template

	host:8000/template

	mashup

	host:3000/

	host:8000/flows

	auth

	host:5000/

	host:8000/auth

	auth

	host:5000/auth/revoke

	host:8000/auth/revoke

	auth

	host:5000/user

	host:8000/auth/user

	STH

	host:8666/

	host:8000/history

	Data-Broker

	host:1026/

	host:8000/metric

	GUI

	host/

	host:8000/gui

	ejbca

	host:5583/sign

	host:8000/sign

	ejbca

	host:5583/ca

	host:8000/ca

Kafka messages

These are the messages sent by components and their subjects. If you are
developing a new internal component (such as a new IoT agent), see API -
data-broker [https://dojot.github.io/data-broker/apiary_0.2.0.html] to check how to receive messages sent by other components in
dojot.

Table 4 Original endpoints

	Component

	Message

	Subject

	DeviceManager

	Device CRUD (Messages - DeviceManager [http://dojotdocs.readthedocs.io/projects/DeviceManager/en/0.2.0/kafka-messages.html])

	dojot.device-manager.device

	iotagent-mosca

	Device data update (Messages - iotagent-mosca [http://dojotdocs.readthedocs.io/projects/iotagent-mosca/en/latest/operation.html#sending-messages-to-other-components-via-kafka])

	device-data

Installation Guide

This page contains information about how to deploy dojot using Docker compose.
Kubernetes and Google Cloud Platform support is on track to be implemented.

Table of Contents

	Installation - Docker compose

	Dependencies

	Docker engine

	Docker Compose

	Installation

	Usage

Installation - Docker compose

This document provides instructions on how to create a trivial deployment
environment on single host for dojot, using docker-compose as the processes
orchestration platform.

While very simple, this deployment option is best suited to development and
assessment of the platform and should not be used for production environments.

This guide has been checked on an Ubuntu 16.04 LTS environment.

Dependencies

This setup has two software requirements docker engine and docker-compose.

Docker engine

Up to date information and installation procedures for the docker engine can be
found at the project’s documentation:

https://docs.docker.com/engine/installation/

Note

An optional step on the installation and configuration process of docker on
any given machine is the setting of who is eligible for creating/spawning
docker instances.

Should the post-installation steps (more specifically the “Manage docker as
non-root user”) have not been run, all docker and docker-compose commands
should be run by the super user (root), or as sudo.

https://docs.docker.com/engine/installation/linux/linux-postinstall/

Docker Compose

Up to date information and installation procedures for the docker-compose can
be found at the project’s documentation:

https://docs.docker.com/compose/install/

Installation

To setup the environment, merely clone the deployment repository and run the
commands below.

The docker-compose enabled deployment scripts and configuration repository can
be found at:

https://github.com/dojot/docker-compose

or as git clone command::

git clone https://github.com/dojot/docker-compose.git
Let's move into the repo - all commands in this page should be executed
inside it.
cd docker-compose

Once the repository is properly cloned, select the version to be used by
checking out the appropriate tag (do notice that the tagname has to be
replaced):

Must be run from within the deployment repo

git checkout tag_name

For instance:

git checkout 0.1.0-dojot

Or if you’re brave enough:

git checkout master

That done, the environment can be brought up by:

Must be run from the root of the deployment repo.
May need sudo to work: sudo docker-compose up -d
docker-compose up -d

To check individual container status, docker’s commands may be used, for
instance:

Shows the list of currently running containers, along with individual info
docker ps

Shows the list of all configured containers, along with individual info
docker ps -a

Note

All docker, docker-compose commands may need sudo to work.

To allow non-root users to manage docker, please check docker’s documentation:

https://docs.docker.com/engine/installation/linux/linux-postinstall/

Usage

The web interface is available at http://localhost:8000. The user is
admin and the password is admin. You also can interact with platform
using the REST API.

Read the User Guide for more information about how to interact with
the platform.

Frequently Asked Questions

Here are some answers to frequently-asked questions from users of dojot
platform.

Got a question that isn’t answered here? Please, open an issue on dojot’s Github repository [http://github.com/dojot/dojot].

Table of Contents

	General

	What is dojot? Why should I use it? Why open source it?

	Where can I get it?

	Which repository is the main one?

	So, I found this pesky bug. How can I inform you about it?

	Usage

	How do I start it? Is it CLI-based or it has a graphical user interface?

	Ok, I started it and I logged in. Now what?

	How can I update my deploy to dojot’s latest version?

	Devices

	What are devices for dojot?

	What is the relationship between this device and my actual device?

	What are virtual devices? How are they different from the other one?

	And what are templates?

	How can I send MQTT data to dojot so that it appears on the dashboard?

	On the dashboard some attributes are shown as tables and others as charts. How are they chosen/set?

	I’m interested in integrating my super cool device with dojot. How can I do it?

	Is there any restrictions about the message my device will send to dojot? Format, size, frequency?

	How can I send some commands to my device through dojot?

	I didn’t find the protocol supported by my device in the type list, is there anything I can do?

	I saved an attribute, but it disappeared from the device. Is it a bug?

	How can I retrieve historical data for a particular device?

	Data Flows

	What is data flow?

	The data flow UI… really looks like node-RED. Are they related in some way?

	Why should I use it?

	What can it do, exactly?

	So, how can I use it?

	Can I apply the same flow to multiple devices?

	Can I correlate data from different devices in the same flow?

	I want to send an email, what should I do?

	What about a HTTP POST request, how can I send it?

	I want to rename the attributes of a device, what should I do?

	I want to aggregate the attributes of multiple devices, what should I do?

	How can I add a new node type to its menu?

	Applications

	What APIs are available for applications?

	How can I use them?

	I’m interested in integrating my application with dojot. How can I do it?

General

What is dojot? Why should I use it? Why open source it?

It’s a brazilian IoT platform launched as open source software with aims to
ease the development of solutions and the IoT ecosystem with local resources
geared towards brazilians needs.

It takes a role as an enabler platform with:

	Open APIs which makes the access to the platform resources easy.

	Capacity to store large volumes of data in different formats.

	Connectors to different types of devices.

	Graphical user interface with flow builder to prototype IoT solutions very
quickly.

	Real time event processing with customizable rules.

Where can I get it?

All components are available in dojot’s GitHub repositories: https://github.com/dojot.

Which repository is the main one?

There are two main ones:

	https://github.com/dojot/dojot: this is where we keep track of all the
things related to this project as a whole, such as architectural
enhancements.

	https://github.com/dojot/docker-compose: repository for Docker compose
files and configurations. This is what we would recommend to use to start
with.

So, I found this pesky bug. How can I inform you about it?

We ask you to open an issue in dojot’s Github repository [http://github.com/dojot/dojot]. If you know exactly which component is
failing, you could open the issue in its repository (it will work the same
way).

If you are able to analyze and fix this bug, please do so. Create a
pull-request with a quick description of what you’ve done.

Usage

How do I start it? Is it CLI-based or it has a graphical user interface?

dojot can be accessed by a nice web-based interface and by REST APIs.
Considering that you installed docker and docker-compose and cloned the
docker-compose repository, starting it up is done by just one command:

$ docker-compose up -d

And that’s it.

The web interface is available at http://localhost:8000. The user is
admin, password admin.

REST APIs are explained in the Applications section.

Ok, I started it and I logged in. Now what?

Nice! Now you can add your first devices, described in Devices, build some
flows and subscribing to device events, both described in Data Flows.

How can I update my deploy to dojot’s latest version?

You need to follow some steps:

	1 Update the docker-compose repository to the cutting-edge version (beware the

	bugs though)

$ cd <path-to-your-clone-of-docker-compose>
$ git checkout master && git pull

If you need a more stable version, you could checkout a tag instead:

$ git tag
0.1.0-dojot
0.1.0-dojot-RC1
0.1.0-dojot-RC2
0.2.0-aikido

$ git checkout 0.2.0-aikido -b 0.2.0

2 Deploy the latest docker images. This command might need sudo.

$ docker-compose pull && docker-compose up -d

This procedure also applies to the available virtual machines once they do use
docker-compose.

Devices

What are devices for dojot?

In dojot, a device is a digital representation of an actual device or gateway
with one or more sensors or of a virtual one with sensors/attributes inferred
from other devices.

Consider, for instance, an actual device with thermal and humidity sensors; it
can be represented inside dojot as a device with two attributes (one for each
sensor). We call this kind of device as regular device or by its
communication protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their physical
counterparts, for instance, we can create one with a higher level of
temperature information (is becoming hotter or is becoming colder) whose
values are inferred from temperature sensors of other devices. This kind of
device is called virtual device.

What is the relationship between this device and my actual device?

It is as simple as it seems: the regular device for dojot is a mirror
(digital twin) of your actual device. You can choose which attributes are
available for applications and other components by adding each one of them at
the device creation interface.

What are virtual devices? How are they different from the other one?

Regular devices are created to serve as a mirror (digital twin) for the
actual devices and sensors. A virtual device is an abstraction that models
things that are not feasible in the real world. For instance, let’s say that a
user has few smoke detectors in a laboratory, each one with different
attributes.

Wouldn’t it be nice if we had one device called Laboratory that has one
attribute isOnFire? Therefore, the applications could rely only on this
attribute to take an action.

Another difference is how virtual devices are populated. Regular ones will be
filled with information sent by devices or gateways to the platform and virtual
ones will be filled by flows or by applications.

And what are templates?

Templates, simply put, are “blueprints for devices” which serve as basis to
create a new device. A single device is built using a set of templates - its
attributes will be inherited from each template (their names must not be
exactly the same, though). If one template is changed, then all associated
devices will also be changed.

How can I send MQTT data to dojot so that it appears on the dashboard?

First of all, you create a digital representation for your actual device. Then,
you configure it to send data to dojot so that it matches its digital
representation.

Let’s take as example a weather station which measures temperature and
humidity, and publishes them periodically through MQTT. First, you create a
device of type MQTT with two attributes (temperature and humidity). Then you
set your actual device to push the data to dojot.

In order to send data to dojot via MQTT (using iotagent-mosca), there are some
things to keep in mind:

	If you don’t define any topic in device template, it will assume the pattern
/<service-id>/<device-id>/attrs (for instance: /admin/efac/attrs).
This should be the topic to which the device will publish its information to.

	If you do define a topic in device template, then your device should publish
its data to it and set the client-id parameter. It should follow the
following pattern: <service>:<deviceid>, such as admin:efac.

	MQTT payload must be a JSON with each key being an attribute of the dojot
device, such as:

{ "temperature" : 10.5,"pressure" : 770 }

On the dashboard some attributes are shown as tables and others as charts. How are they chosen/set?

The type of an attribute determines how the data is shown on the dashboard as
follows:

	Geo: geo map.

	Boolean and Text: table.

	Integer and Float: line chart.

I’m interested in integrating my super cool device with dojot. How can I do it?

If your device is able to send messages using MQTT (with JSON payload), CoAP or
HTTP, there is a good chance that your device can be integrated with minor or
no modifications whatsoever. The requirements for such integration is described
in the question How can I send MQTT data to dojot so that it appears on the
dashboard?.

Is there any restrictions about the message my device will send to dojot? Format, size, frequency?

None but format, which is described in the question How can I send MQTT data
to dojot so that it appears on the dashboard?.

How can I send some commands to my device through dojot?

For now, you can send HTTP requests to dojot containing a few instructions
about which device should be configured and the actuation payload itself. More
details on that can be found in Device-Manager how-to - sending actuation
messages [http://dojotdocs.readthedocs.io/projects/DeviceManager/en/0.2.0/using-device-manager.html#sending-actuation-messages-to-devices].

I didn’t find the protocol supported by my device in the type list, is there anything I can do?

There are some possibilities. The first one is to develop a proxy to translate
your protocol to one supported by dojot. The second one is to develop a
connector similar to the existing ones for MQTT, CoAP and HTTP.

I saved an attribute, but it disappeared from the device. Is it a bug?

You might have saved the attribute, but not the device. If you don’t click on
the save button for the device, the added attributes will be discarded. We’re
improving the system messages to caveat the users and remember them to save
their configurations.

How can I retrieve historical data for a particular device?

You can do this by sending a request to /history endpoint, such as:

curl -X GET \
 -H 'Authorization: Bearer eyJhbGciOiJIUzI1NiIsIn...' \
 "http://localhost:8000/history/device/3bb9/history?lastN=3&attr=temperature"

which will retrieve the last 3 entries of temperature attribute from the
device 3bb9:

[
 {
 "device_id": "3bb9",
 "ts": "2018-03-22T13:47:07.050000Z",
 "value": 29.76,
 "attr": "temperature"
 },
 {
 "device_id": "3bb9",
 "ts": "2018-03-22T13:46:42.455000Z",
 "value": 23.76,
 "attr": "temperature"
 },
 {
 "device_id": "3bb9",
 "ts": "2018-03-22T13:46:21.535000Z",
 "value": 25.76,
 "attr": "temperature"
 }
]

There are more operators that could be used to filter entries.
Check history-ws API [https://dojot.github.io/history-ws/apiary_0.2.0.html]
documentation to check out all possible operators.

Data Flows

What is data flow?

It’s a sequence of functional blocks to process incoming device messages. With
a flow you can dynamically analyze each new message in order to apply
validations, infer information and trigger actions or notifications.

The data flow UI… really looks like node-RED. Are they related in some way?

It’s based on the Node-RED frontend, but uses its own engine to process the
messages. If you’re familiar with Node-Red, it won’t be difficult to use it.

Why should I use it?

It allows one of the coolest things of IoT in an easy and intuitive way, which
is to analyze data for extracting information and then take actions.

What can it do, exactly?

You can do things such as:

	Create views from a particular device, by renaming, aggregating and
changing values, etc).

	Infer information based on switch, edge-detection and geo-fence rules.

	Notify through email.

	Notify through HTTP.

The data flows component is in constantly development with new features being
added every new release.

There are mechanisms to add new processing blocks to new flows. Check the How
can I add a new node type to its menu? question for more information on that.

So, how can I use it?

It follows the basic usage flow as node-RED. You can check its documentation [https://nodered.org] for more details
about this.

Can I apply the same flow to multiple devices?

You can use a template as input to indicate that the flow should be applied to
all devices associated to that template. It’s worth to point out that the flow
is processed individually for each new input message, i.e. for each input
device.

Can I correlate data from different devices in the same flow?

As the data flow is processed individually for each message, you need to create
a virtual device to aggregate all attributes, then use this virtual device as
the input of the flow.

I want to send an email, what should I do?

Basically, you need to add an email node and configure it. This node is
pre-configured to use the Gmail server gmail-smtp-in.l.google.com, but
you’re free to choose your own. For writing an email body, you can use a
template before the email.

[image: ../_images/df_email.gif]
It is important to point out that dojot contains no e-mail server. It will
generate SMTP commands and send them to the specified e-mail server.

What about a HTTP POST request, how can I send it?

It is almost the same process as sending an e-mail.

[image: ../_images/df_http_request.gif]
One important note: make sure that dojot can access your server.

I want to rename the attributes of a device, what should I do?

First of all, you need to create a virtual device with the new attributes, then
you build a data flow to rename them. This can be done connecting a ‘change’
node after the input device to map the input attributes to the corresponding
ones into an output, and finally connecting the ‘change’ to the virtual device
and assigning to it the output.

[image: ../_images/df_attributes_renaming.gif]

I want to aggregate the attributes of multiple devices, what should I do?

First of all, you need to create a virtual device to aggregate all attributes,
then you build a data flow to map the attributes of each device to the virtual
one. This can be done connecting a ‘change’ node after each input device to put
the input values into an output, and finally connecting all changes to the
virtual device and assigning to it the output.

[image: ../_images/df_attributes_aggregation.gif]

How can I add a new node type to its menu?

It’s pretty easy, actually, although it needs a few commands in bash. To add a
new node, you should send the following request:

curl -H "Authorization: Bearer ${JWT}" http://localhost:8000/flows/v1/node
-H "content-type: application/json" -d '{"image": "mmagr/kelvin:latest",
"id":"kelvin"}'

This will add a new node called ‘kelvin’ which is implemented by a docker image
located at “mmagr/kelvin”. There’s only one caveat: you should pull this image
in your target system (where dojot is installed) before adding it to the flow
menu.

If you don’t want this node anymore, you could delete it:

curl -X DELETE -H "Authorization: Bearer ${JWT}"
"http://localhost:8000/flows/v1/node/kelvin"

And that’s it! In the flowbroker [https://github.com/dojot/flowbroker] repository, there is an example of how to
build a Docker image that could be added to flow node menu.

Applications

What APIs are available for applications?

You can check all available APIs in the API Listing page

How can I use them?

There is a very quick and useful tutorial in the User Guide.

I’m interested in integrating my application with dojot. How can I do it?

This should be pretty straightforward. There are two ways that your application
could be integrated with dojot:

	Retrieving historical data: you might want to periodically read all
historical data related to a device. This can be done by using this API
(one side-note: all endpoints described in this apiary should be preceded
by /history/).

	Subscribing to events related to devices: if your application is able
to listen to events, you might rather use subscriptions, which can be
created using this API (also, all endpoints should be preceded by
/metrics/).

	Using mashup to pre-process data: if you want to do something more, you
could use flows. They can help process and transform data so that they can
be properly sent to your application via HTTP request, by e-mail or stored
in a virtual device (which can be used to generate notifications as
previously described).

All these endpoints should bear an access token, which is retrieved as
described in the question How can I use them?.

Index

Crypto Service

Crypto Service provides data encryption and decryption functions to other dojot components. It is used only by internal services so they can protect data communication (both internally and externally) and data storage.

Available as a Docker image, Crypto Service can be instantiated easily and integrated in a short time. Encrypt and decrypt data functionalities are accessed through REST APIs.

Table of Contents

	REST APIs

	Usage Examples

REST APIs

Encrypt and decrypt data APIs are described below.

Decrypt

POST /crypto/decrypt

Request

Headers

Content-Type: application/json

Body

{
 "data": "Clear or cipher data",
 "tagSize": 16,
 "key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
 "iv": "AD0ACC568C88C116D57B273D98FB92C0"
}

Response 200

Headers

Content-Type: application/json

Body

{
 "data": "Cipher or clear data",
 "result": "SUCCESS"
}

Encrypt

POST /crypto/encrypt

Request

Headers

Content-Type: application/json

Body

{
 "data": "Clear or cipher data",
 "tagSize": 16,
 "key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
 "iv": "AD0ACC568C88C116D57B273D98FB92C0"
}

Response 200

Headers

Content-Type: application/json

Body

{
 "data": "Cipher or clear data",
 "result": "SUCCESS"
}

Usage Examples

In order to use cryptographic functions provided by Crypto Service, one must access the available REST APIs through a HTTP request.

Examples of how those requests can be made are showed bellow using the command line tool curl.

Encrypt

curl -X POST \
 http://localhost:8080/cryptointegration/rest/crypto/encrypt \
 -H 'content-type: application/json' \
 -d '{
 "data": "000102030405060708090A0B0C0D0F",
 "tagSize": 16,
 "key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
 "iv": "AD0ACC568C88C116D57B273D98FB92C0"
}'

Decrypt

curl -X POST \
 http://localhost:8080/cryptointegration/rest/crypto/decrypt \
 -H 'content-type: application/json' \
 -d '{
 "data": "C0FBC8DB5F72AD8DC04ECA2E32DA793F86D59D6",
 "tagSize": 16,
 "key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
 "iv": "AD0ACC568C88C116D57B273D98FB92C0"
}'

MQTT-TLS Tutorial

This document describes how to configure dojot to use MQTT over TLS.

Table of Contents

	tl;dr

	Components

	EJBCA-REST

	What is a certificate?

	I have a CSR. How can I ask EJBCA to sign it for me?

	So, how does EJBCA work in dojot?

	MQTT Manager

	Mosquitto configuration files

	Certificate retriever

	Important Notes

	CRL (Certification Revocation List)

	Debugging

	How to read a certificate

	Errors in secure connection handshake between device and Mosquitto

	Handshake is OK, but no published data reaches iotagent

tl;dr

For a device to connect using TLS with Mosquitto, it must possess:

	A key pair (.key file);

	A certificate signed by a Certificate Authority (CA) trusted by
Mosquitto (.crt file);

	The certificate of this CA (.crt file);

	An entry on Mosquitto Access Control List (ACL), allowing the device
to publish on a specific topic;

	(optional) A Certificate Revocation List (CRL).

When a device is created, DeviceManager will automatically notify
the following components:

	IoTAgent: will register the new device on its internal cache.

	MQTT-Manager: will create an entry on the ACL, allowing the device to
publish on a specific topic.

	EJBCA: will create an end entity so a certificate can be created on
the future.

By default, dojot uses clear MQTT. To activate TLS, docker-compose.yml must be
changed:

	The image for service ‘mqtt’ must be changed from ‘ansi/mosquitto’ to
‘dojot/mqtt-manager’;

	The public port for ‘mqtt’ service must be changed from ‘1883:1883’ to
‘8883:8883’;

	The MQTT_TLS variable of ‘iotagent’ service must be set to true (lowercase).

On the configuration file ‘iotagent/config.json’:

	The flag ‘secure’ should be changed to true

Components

EJBCA-REST

EJBCA [https://www.ejbca.org] is a complete Private Key Infrastructure (PKI) capable to manage CAs,
cryptography keys and certificates. EJBCA provides a SOAP, web and a command
line interface. EJBCA-REST is an wrapper on top of EJBCA that provides modern
interfaces, like REST and Kafka.

EJBCA provides SOAP, web and command line interfaces. EJBCA-REST is a wrapper
on top of EJBCA that complements those, allowing the CA to be configured using
REST. When used within dojot, it also listens to Kafka events, allowing its
automatic configuration.

What is a certificate?

A certificate contains the public key for an entity (a user, device, website),
along with information about this entity, about the CA which signs the
certificate, the allowed certificate usage and a checksum. When a entity wants
a certificate to be signed, the entity should create a CSR file and send it to
the desired CA. The CSR file is an ‘intention of certification’. The file
contains the information required from the entity and some information about
the certificate use, hostnames and IPs where the certificate will reside,
alternative names for the entity, etc. EJBCA can decide, using its configured
policies, what information to keep, to discard and to overwrite of the received
CSR. EJBCA can refuse to sign a CSR if it concludes that it is not safe enough
according to its policies.

These configurable policies are called ‘Certificate Profiles’. One Certificate
profile named CFREE, specialized for MQTT TLS, is provided out of the box.

In short, CFREE have the following configurations (and many more):

	Cryptography keys must have between 2048 and 8192 bits;

	Certificate expires in 730 days;

	Entities can define hostnames and IPs;

	Key usage is marked as not critical (for now);

	The hash algorithm is SHA256. The sign algorithm is RSA.

I have a CSR. How can I ask EJBCA to sign it for me?

Calm down! EJBCA will not allow strangers to ask for certification. You need to
authenticate yourself. EJBCA use a username+password authentication system. The
term ‘end entity’ will be used to refer to EJBCA users to follow the terms on
EJBCA documentation and to avoid ambiguities between EJBCA users and dojot
users. An administrator should create the end entity. An entity that was just
created has the state ‘New’ an can generate a certificate. After signing a
certificate for an entity, the end entity’s state changes to ‘Generated’ and
will no longer accept this username and password. EJBCA ‘End entities’ can
create only one certificate.

So, how does EJBCA work in dojot?

When creating a new device, an associated end entity is created in EJBCA. Its
name will be the device’s ID (like ‘8fa3’) and its password will be always
‘dojot’.

A certificate can be signed by sending a HTTP POST request to
host:1234/sign/<cname>/pkcs10. CName is the end entity’s name (or device). The
payload sent with this request should be a JSON containing the end entity
password and a CSR file (certificate intention) in base64 format.

Note that the URL is ‘routed’ by the API gateway. As in other APIs in dojot, a
JWT is needed. You can find how to generate and how to use such token in User
Guide [http://dojotdocs.readthedocs.io/en/0.2.0/user_guide.html#first-steps].

In order to create the CSR file and ask for a certificate signature, a user can
use a helper script called ‘Certificate Retriever’, which is detailed in
Certificate retriever section.

MQTT Manager

MQTT-Manager is a helper service used to configure Mosquitto MQTT broker in a
simple and ‘on-the-fly’ way. It can be configured using REST interfaces and
Kakfa. Thus, HTTP requests or Kafka messages can be used to create and remove
devices, as well as update CRL file (certification revocation list). This
service is distributed as a docker container for easy deploy and its source
code repository can be accessed in MQTT Manager repository [https://github.com/dojot/mqtt-manager].

Mosquitto by itself doesn’t generate nor revoke certificates, it only relies on
a CA and implements TLS protocol. The ‘creation’ of a particular device
consists only in adding a new rule to ACL file in Mosquitto. Such file looks
like:

user iotagent
topic read /#
user 24f6
topic write /admin/24f6/attrs

Each rule is composed by two lines: the first one specifies the user (device)
and the second one defines which action (write or read) is allowed to which
topic. In the example above, the user iotagent can read all topics (# is a
wildcard). Also, the device with ID 24f6 can write to topic /admin/24f6/attrs.
The device ID is retrieved in ‘Common name’ certificate field.

If a device sends data to a topic which it has no write permissions, then all
data is discarded. Mosquitto won’t log any errors related to this.

When the ACL is changes, Mosquitto must be restarted (or a SIGDUP signal can be
sent to its process). MQTT-Manager does this automatically when creating or
removing devices.

A script is executed when firing the container up. This script will generate a
pair of keys to Mosquitto, retrieves the certificate and CRL from a CA and asks
it to sign its public key. ALl generated files are placed in
/usr/local/src/mosquitto-1.4.13/certs (inside the container).

Mosquitto will only accept device connections that have certificate signed by
its trusty CA.

Also note that MQTT-Manager is used only in case when a TLS-enabled broker is
needed. If this is not the case, then the vanilla Mosquitto docker image [https://hub.docker.com/r/ansi/mosquitto] can
be used.

Mosquitto configuration files

Checkout this commented Mosquitto configuration file:

network port on which Mosquitto will accept new connections
port 8883

Trusted CA certificate
cafile /usr/local/src/mosquitto-1.4.13/certs/ca.crt

Mosquitto certificate
certfile /usr/local/src/mosquitto-1.4.13/certs/mosquitto.crt

Mosquitto key par
keyfile /usr/local/src/mosquitto-1.4.13/certs/mosquitto.key

tls_version tlsv1.2

If false, a device will check Mosquitto certificate, but Mosquitto won't check
the device counterparts.
If true, both checks are performed (2-way TLS)
require_certificate true

Certificate Common Name field will be used as username.
Thus, a device with 'CN=abc1' will have a 'user abc1' entry in Mosquitto's ACL
use_identity_as_username true

Permission list file
acl_file /usr/local/src/mosquitto-1.4.13/certs/access.acl

CA CRL.
crlfile /usr/local/src/mosquitto-1.4.13/certs/ca.crl

Note that for all configuration updates, it is mandatory to restart
Mosquitto or to send a SIGDUP signal to its process.

Certificate retriever

This component is a helper script for device certificates creation. It
is available at Certificate Retriever GitHub repository [https://github.com/dojot/certificate-retriever] and it
coded using Python 3.

A user can use it by executing:

./certificate-retriever.py HOST DEVICE-NAME CA [OPTIONS]

The mandatory parameters are:

	HOST: where dojot is. Example: http://localhost:8000

	DEVICE-NAME: device name that will get a new certificate. Example:
ac32

	CA: CA which will sign the certificate. Example: IOTmidCA (this is
the CA name used in dojot)

Other options are:

	-u or –username USERNAME: dojot’s username. If this parameter is not
specified here, it will be asked iteratively.

	-w or –overwrite: overwrites any certificate files or criptographic
keys if already existent.

	-k or –key KEYLENGTH: size of the criptographic key being generated
(in bits).

	-d or –dns: Hostname where the certificate owner can be reached out.
Note that this has no relation with DNS (Domain Name System) servers
- this name was kept because x509 certificates have an attribute that
is called DNS.

	-i or –ip: same as -d, buto to specify IP address.

	–skip-https-check: if dojot accepts HTTPS connections but it has no
valid certificate, then this option will allow the connection to be
made.

Note that authentication is performed in dojot. The script will ask for user
credentials and will invoke user authentication automatically. The user needs
permission for certificate signing to be able to use this script.

An end entity must exist in EJBCA in ‘New’ state before asking for a new
certificate signature. When a new device is created, an end entity is
automatically created in EJBCA by DeviceManager. This new end entity’s name is
the device ID itself. Its password is ‘dojot’.

The script authenticates users with given username and password, retrieves CA
certificate, generates a key pair as well as a CSR file and asks for
certificate signature, in this order. Any error in any step will halt its
execution.

After successfully executed, all certificates can be found in ‘./certs’
folder.

Important Notes

These are a few but important notes related to device security and
associated subjects.

CRL (Certification Revocation List)

A CRL is a list which contains all revoked certificates. It is used to indicate
which certificates are no longer valid (administratively set to invalid) as a
normal certificate can be used for 1 to 5 years. This list is signed by CA and
also has an expiration date - 1 day by default. In TLS protocol, if CRL is
expired then the recommended action to be taken is to refuse all incoming
connections, as there is no way to check if the certificates used in those
connections are invalid or not. This procedure is implemented in Mosquitto.

Therefore, CA must generate a new list periodically. All components that use it
must be updated.

Debugging

TLS errors might be not so verbose as other problems. If an error occurrs, the
user might not know what went wrong because no component indicates any problem.
In this section there are some tips, frequent problems and debugging tools to
find out what’s happening.

How to read a certificate

A certificate file can be in two formats: PEM (base64 text) or DER
(binary). OpenSSL offers tools to read such formats:

openssl x509 -noout -text -in certFile.crt

To read a CRL:

openssl crl -inform PEM -text -noout -in crlFile.crl

Errors in secure connection handshake between device and Mosquitto

If any errors occur during connection handshake, something like the
following error might appear in Mosquitto’s logs:

1514550332: New connection from 172.20.0.1 on port 8883.
1514550332: OpenSSL Error: error:140940E5:SSL routines:ssl3_read_bytes:ssl handshake failure

If this happens, try to establish connection using ‘openssl client’, as
it is more verbose in error description.

openssl s_client -connect localhost:8883 -CAfile ca.crt -cert device.crt -key device.key

Common errors are shown by openssl_client (and _server as well):

	SSL alert number 45: this error indicates that a certificate expired.
Keep in mind that CRL also expires.

	SSL alert number 48: received a valid certificate chain or partial
chain, but the certificate was not accepted because the CA
certificate could not be located or could not be matched with a
known, trusted CA. This message is always fatal.

	Alert unknown CA: check whether sent CA certificate is correct. If it
is a sub-CA, check if all of its certificate chain was sent. This
error also occurs if the CA certificate data (specially common name
attribute) is the same as those from client certificate.

Handshake is OK, but no published data reaches iotagent

You can check whether the device could connect to MQTT broker by
checking Mosquitto’s log:

1514482004: New client connected from 172.20.0.10 as mqttjs_c011c22d (c1, k10, u'deviceName')

If that line shows up, it means that the TLS handshake worked and the device
successfully connected to Mosquitto. Check if the device has an ACL entry in
Mosquitto to allow it to publish data in the specified topic. Keep in mind that
if a device publishes something in another topic (which it has no permission to
publish) all data is discarded by Mosquitto with no warnings.

Mutual Authentication

A security role is to ensure that only legitimate users have access to the resources and information they need to perform their duties. Authentication is part of this access control, when validating entities identity. At the same time, another security role is to ensure that an entity accesses legitimate resources and information, thereby avoiding situations such as sending information to fraudulent servers, for example.

Mutual authentication is the process in which two entities authenticate each other. In a client-server communication, the client must prove its identity to the server and the server must prove its identity to the client. Thus, each entity can ensure that they are communicating with a legitimate interlocutor.

Mutual authentication protects access to data the application accesses from dojot and therefore protects access to data of that application’s user. It is done by ensuring that only registered applications can access platform data and functionality. In addition, it ensures that the platform the application is accessing is legitimate, meaning that no attacker can pass themselves by the platform and get user or application data.

Dojot offers a mutual authentication service through a Docker image. This service runs inside the platform and can be accessed using its interfaces.

Table of Contents

	Using Mutual Authentication

	Application Registration

	Authentication

	Library Initialization

	Callback Registration

	Call mutual authentication function

	Accessing dojot APIs

Using Mutual Authentication

Applications can access dojot functionality to interact with its components and connected devices. For an application to ensure that it is communicating with a legitimate platform (and vice versa), it must make use of the mutual authentication functionality dojot provides. This is a simple process and its use requires only three steps to follow:

	Application Registration. When an application is registered in dojot, it receives an identifier and a key that must be kept secret. This key is used to authenticate the application on the platform.

	Authentication. At the beginning of the communication between application and dojot, the application initiates a handshake in which the two entities will exchange information to ensure they are legitimate.

	Using the platform. When accessing dojot interfaces, the platform informs a session identifier that is obtained at the time of authentication. Thus, the platform can verify that the mutual authentication process was performed by the application.

Application Registration

An application that is registered with dojot will receive an identifier and a key that must be kept secret. The registration indicates that an application will communicate and use platform features.

Currently, the method used to register an application is the use of a REST interface. After making the request for the registration, the application will receive a unique identifier and a key. The API is described below

REGISTER COMPONENT - Register new application

POST /kerberos/registerComponent

Response 200

Headers
Content-Type: application/json

Body
{
 "AppId": "0001020304050607",
 "AppKey": "000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f"
}

Received identifier and key will be used at the moment the application authenticates with dojot. In order to do this, a client library is provided to perform the authentication process (available in github.com/dojot/ma-client-libs) and therefore, the library should have knowledge about the values of the identifier and the key. The file https://github.com/dojot/ma-client-libs/kerberos/src/protocol/unique.h is used to store these values and will be used by the library at the moment of authentication.

Authentication

When communicating with dojot, the application must perform mutual authentication. This process is done through the library provided in github.com/dojot/ma-client-libs. By using the library, three steps should be followed:

	Initialize the library with server addresses

	Register the callback function

	Call mutual authentication function

Library Initialization

Initialization tells the library which URLs will be used to perform mutual authentication. The function to be used is described below:

Initialize Kerberos

errno_t initializeKerberos(uint8_t* host, uint8_t hostLength, uint8_t* uriRequestAS, uint8_t requestASLength, uint8_t* uriRequestAP, uint8_t requestAPLength)

The arguments used in the function are described below.

	host - Platform main URL

	hostLength - Host string size

	uriRequestAS - requestAS endpoint

	requestASLength - requestAS string size

	uriRequestAP - requestAP endpoint

	requestAPLength - requestAP string Size

The following code snippet shows an example of how the function can be used.

char* host = "http://localhost:8000/"; // dojot URL
char* reqAS = "kerberos/requestAS";
char* reqAP = "kerberos/requestAP";

errno_t ret = initializeKerberos(host, strlen(host), reqAS, strlen(reqAS), reqAP, strlen(reqAP));

Callback Registration

On the mutual authentication process, the library communicates with the server and checks received data. If an error occurs during this process, the library will call a callback function.

This callback function is implemented by the library user and must be registered before the authentication process. The callback function can include code for error handling and logging, for example.

Set Callback

errno_t setCallback(void (*callback)(int))

The following code shows an example of how the callback function can be created and registered.

void errorCallback(int err){
 // Error handling and logging code
}

errno_t ret = setCallback(&errorCallback);

Call mutual authentication function

After initializing the library with platform URL and registering the callback function, the library is ready to perform the mutual authentication process. The function that is used to perform the process is shown below.

errno_t executeKerberosHandshake()

The code below shows an example of how the function may be used.

errno_t ret = executeKerberosHandshake();

Accessing dojot APIs

After the mutual authentication process completes, the application may send additional data in the calls to the platform interfaces. This data is the mutual authentication session identifier and is sent through an HTTP header.

The following is an example of a call to a dojot API where mutual authentication session identifier is also sent.

GET /device HTTP/1.1
Host: localhost:8000
ma-session-id: a4cdad05441940c5c07ee9f55b8fafbdc0eba14afce449c9c9ec052bb20f50f4

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 dojot documentation

 		
 Architecture

 		
 Components

 		
 Kafka + data-broker + NGSI

 		
 DeviceManager

 		
 IoT Agent

 		
 User Authorization Service

 		
 flowbroker

 		
 History

 		
 Logging and Auditing Service

 		
 Kong API Gateway

 		
 GUI

 		
 Elastic Service Controller

 		
 Alarm Management

 		
 Image manager

 		
 Infrastructure

 		
 Communications

 		
 User Guide

 		
 Who should read this

 		
 Getting Started

 		
 dojot basics

 		
 User authentication

 		
 Devices and templates

 		
 Flows

 		
 Step-by-step device management

 		
 Integrating physical devices

 		
 Components and APIs

 		
 Components

 		
 Exposed APIs

 		
 Kafka messages

 		
 Installation Guide

 		
 Installation - Docker compose

 		
 Dependencies

 		
 Installation

 		
 Usage

 		
 Frequently Asked Questions

 		
 General

 		
 What is dojot? Why should I use it? Why open source it?

 		
 Where can I get it?

 		
 Which repository is the main one?

 		
 So, I found this pesky bug. How can I inform you about it?

 		
 Usage

 		
 How do I start it? Is it CLI-based or it has a graphical user interface?

 		
 Ok, I started it and I logged in. Now what?

 		
 How can I update my deploy to dojot’s latest version?

 		
 Devices

 		
 What are devices for dojot?

 		
 What is the relationship between this device and my actual device?

 		
 What are virtual devices? How are they different from the other one?

 		
 And what are templates?

 		
 How can I send MQTT data to dojot so that it appears on the dashboard?

 		
 On the dashboard some attributes are shown as tables and others as charts. How are they chosen/set?

 		
 I’m interested in integrating my super cool device with dojot. How can I do it?

 		
 Is there any restrictions about the message my device will send to dojot? Format, size, frequency?

 		
 How can I send some commands to my device through dojot?

 		
 I didn’t find the protocol supported by my device in the type list, is there anything I can do?

 		
 I saved an attribute, but it disappeared from the device. Is it a bug?

 		
 How can I retrieve historical data for a particular device?

 		
 Data Flows

 		
 What is data flow?

 		
 The data flow UI… really looks like node-RED. Are they related in some way?

 		
 Why should I use it?

 		
 What can it do, exactly?

 		
 So, how can I use it?

 		
 Can I apply the same flow to multiple devices?

 		
 Can I correlate data from different devices in the same flow?

 		
 I want to send an email, what should I do?

 		
 What about a HTTP POST request, how can I send it?

 		
 I want to rename the attributes of a device, what should I do?

 		
 I want to aggregate the attributes of multiple devices, what should I do?

 		
 How can I add a new node type to its menu?

 		
 Applications

 		
 What APIs are available for applications?

 		
 How can I use them?

 		
 I’m interested in integrating my application with dojot. How can I do it?

_images/df_attributes_aggregation.gif
Devices [Sr—

o I te T

dojot

or o

Awrms wouzna 02420 wouzore 102436

& o

aggr-sensor

e

wouza 0z

_images/df_http_request.gif
dojot Data Flows
o BEEE

_images/new_architecture.png
Machine
Learning

—_ @ Logging and Auditing
= Services

Application

[} History H
) = .
hE =g K datmbrokers =
NGSI Big Data
m

I

Service

Device
Manager

PO User Authorization Service

’ flowbroker

Kong
API Gateway

cul

Image
Manager

8
)

.)K. Elastic Service Controller

_images/df_attributes_renaming.gif
Devices.

P wowaorsienan -

_images/df_email.gif
Data Flows

dojot

g
S

&

[
< IR

