

dojot Authentication service

[image: License badge] [https://opensource.org/licenses/GPL-3.0] [image: Docker badge] [https://hub.docker.com/r/dojot/auth/]

This service handles user authentication for dojot [https://github.com/dojot/dojot]. Namely this is used to
maintain the set of known users, and their associated roles. Should a user need
to interact with the platform, this service is responsible for generating the
JWT token to be used when doing so.

Contents:

	Installation

	Configuration
	Database related configuration

	REST API

	Internal messages
	Tenant creation

	Tenant removal

	How to build/update/translate documentation
	Build

	Update workflow

Installation

This service depends on a couple of python libraries to work. To install them,
please run the commands below. These have been tested on an ubuntu 16.04
environment (same used when generating) the service’s docker image.

you may need sudo for those
apt-get install -y python3-pip
python3 setup.py

Another alternative is to use docker to run the service. To build the
container, from the repository’s root:

docker build -t <tag> -f docker/Dockerfile .

In order to run this command, you may need sudo on your machine:
https://docs.docker.com/engine/installation/linux/linux-postinstall/

Configuration

Database related configuration

Some auth configuration is made using environment variables. On a Linux system
one can set a environment variable with the command

export VAR_NAME=varvalue

on a docker-compose schema, one can set environment variables for a container
Append the following configuration

environment:
 VAR_NAME: "varvalue"

The default value is used if the configuration was not provided
The following variables can be set

Table 1 Environment variable

	Variable

	Description

	Default value

	AUTH_DB_NAME

	database type. Current only postgres is supported

	postgres

	AUTH_DB_USER

	The username used to access the database

	auth

	AUTH_DB_PWD

	The password used to access the database

	empty password

	AUTH_DB_HOST

	The URL used to connect to the database

	http://postgres

	AUTH_KONG_URL

	The URL where the Kong service can be found. If set to ‘DISABLED’ Auth won´t try to configure Kong and will generate secrets for the JWT tokens by itself.

	http://kong:8001

	AUTH_TOKEN_EXP

	Expiration time in second for generated JWT tokens

	420

	AUTH_TOKEN_CHECK_SIGN

	Whether Auth should verify received JWT signatures. Enabling this will cause one extra query to be performed.

	False

	AUTH_CACHE_NAME

	Type of cache used. Currently only Redis is suported. If set to ‘NOCACHE’ auth will work without cache. Disabling cache usage considerably degrades performance.

	redis

	AUTH_CACHE_USER

	username to access the cache database

	redis

	AUTH_CACHE_PWD

	password to acces the cache database

	empty password

	AUTH_CACHE_HOST

	ip or hostname where the cache can be found

	redis

	AUTH_CACHE_TTL

	Cache entry time to live in seconds

	720

	AUTH_CACHE_DATABASE

	cach database name (or number)

	‘0’

If you are running without docker, You will need to create and populate the
database tables before the first run. This can be done by executing the following commands in python3 shell:

>>> from webRouter import db
>>> db.create_all()

Create the initial users, groups and permissions

python3 initialConf.py

REST API

This is the REST API documentation for DeviceManager. This page is
automatically generated from these files:

	auth

	CRUD API

	Relations

	Report

All APIs are available in Github pages API description [https://dojot.github.io/auth/apiary_master.html]

Internal messages

There are some messages that are published by Auth through Kafka.
These messages are related to tenancy lifecycle events.

Table 2 Kafka messages

	Event

	Subject

	Service

	Message type

	Tenant creation

	dojot.tenancy

	internal

	Tenant creation

	Tenant removal

	dojot.tenancy

	internal

	Tenant removal

Tenant creation

This message is published whenever a new tenant is created.
Its payload is a simple JSON:

{
 "type": "CREATE",
 "tenant": "admin"
}

And its attributes are:

	type (string): “CREATE”

	tenant: New tenant

Tenant removal

This message is published whenever a new tenant is removed.
Its payload is a simple JSON:

{
 "type": "DELETE",
 "tenant": "admin"
}

And its attributes are:

	type (string): “DELETE”

	tenant: Tenant to be removed

How to build/update/translate documentation

If you have a local clone of this repository and you want to change the
documentation, then you should follow this simple guide.

Build

The readable version of this documentation can be generated by means of
sphinx. In order to do so, please follow the steps below. Those are
actually based off ReadTheDocs documentation [https://docs.readthedocs.io/en/latest/getting_started.html].

pip install sphinx sphinx-autobuild sphinx_rtd_theme sphinx-intl
export READTHEDOCS_VERSION=latest
make html

The READTHEDOCS_VERSION environment variable should be set to the component version being built, such as latest or 0.2.0. In the automated build process from readthedocs, this exact variable will be set as the name of the branch/tag being built.

For that to work, you must have pip installed on the machine used to
build the documentation. To install pip on an Ubuntu machine:

sudo apt-get install python-pip

To build the documentation in Brazilian Portuguese language, run the
following extra commands:

sphinx-intl -c conf.py build -d locale
make html BUILDDIR=build/html-pt_BR O='-d build/doctrees/ -D language=pt_BR'

Update workflow

To update the documentation, follow the steps below:

	Update the source files for the english version

	Extract translatable messages from the english version

make gettext

	Update the message catalog (PO Files) for pt_BR language

sphinx-intl -c conf.py update -p build/gettext -l pt_BR

	Translate the messages in the pt_BR language PO files

This workflow is based on the Sphinx i18n guide [http://www.sphinx-doc.org/en/stable/intl.html].

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 dojot Authentication service

 		
 Installation

 		
 Configuration

 		
 Database related configuration

 		
 REST API

 		
 Internal messages

 		
 Tenant creation

 		
 Tenant removal

 		
 How to build/update/translate documentation

 		
 Build

 		
 Update workflow

_static/up-pressed.png

_static/up.png

