
DeviceManager Documentation
Release 0.2.0

Matheus Magalhaes

Sep 04, 2020

Contents:

1 DeviceManager concepts 3
1.1 Device . 3
1.2 Template . 5

2 Using DeviceManager 7
2.1 Creating templates and devices . 7
2.2 Removing templates and devices . 13
2.3 Sending actuation messages to devices . 15

3 REST API 19

4 Internal messages 21
4.1 Creation message . 21
4.2 Update message . 23
4.3 Removal message . 24
4.4 Actuation message . 24
4.5 Template update message (deprecated) . 25

5 How to build/update/translate documentation 27
5.1 Build . 27
5.2 Update workflow . 27

6 Dependencies 29

7 How to run 31

8 How to use it 33

i

ii

DeviceManager Documentation, Release 0.2.0

The DeviceManager handles all operations related to creation, retrieval, update and deletion of devices in dojot. For
more information on that, check DeviceManager Concepts page.

Contents: 1

https://opensource.org/licenses/GPL-3.0
https://hub.docker.com/r/dojot/device-manager/
https://github.com/dojot/dojot
concepts.html

DeviceManager Documentation, Release 0.2.0

2 Contents:

CHAPTER 1

DeviceManager concepts

Here are the main concepts needed to correctly use DeviceManager. They are not hard to understand, but they are
essential to operate not only DeviceManager, but the dojot platform as well.

1.1 Device

In dojot, a device is a digital representation of an actual device or gateway with one or more sensors or of a virtual one
with sensors/attributes inferred from other devices.

Consider, for instance, an actual device with temperature and humidity sensors; it can be represented into dojot as a
device with two attributes (one for each sensor). We call this kind of device as regular device or by its communication
protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their associated physical ones, for instance, we can
create one with higher level of information of temperature (is becoming hotter or is becoming colder) whose values
are inferred from temperature sensors of other devices. This kind of device is called virtual device.

The information model used for both “real” and virtual devices is as following:

Table 1.1: Device structure
At-
tribute

Type and mode Description

id String (read only) This is the identifier that will be used when referring to this device.
label String (read-write, required) An user label to identify this device more easily
created DateTime (read-only) Device creation date
updated DateTime (read-only) Device update date
tem-
plates

[String (template ID)] (read-
write)

List of template IDs to “assemble” this device (more on this on ‘Tem-
plate’ section)

attrs [Attributes] (read-only) Map of attributes currently set to this device.

The attrs attribute is, in fact, a map associating a template ID with an attribute, such as:

3

DeviceManager Documentation, Release 0.2.0

{
"attrs": {
"1": [

{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "this-is-a-sample-attribute",
"value_type": "float",
"type": "dynamic",
"id": 1

}
],
"2": [

{
"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "this-is-another-sample-attribute",
"value_type": "string",
"type": "dynamic",
"id": 4

}
]

}
}

This structure indicates that there are two attributes: one called this-is-a-sample-attribute from template
ID 1 and another one called this-is-another-sample-attribute from template ID 2.

Table 1.2: Attribute structure
Attribute Type and mode Description
id integer (read-write) Attribute ID (automatically generated)
label string (read-write, required) User label for this attribute
created DateTime (read-only) Attribute creation date
updated DateTime (read-only) Attribute update date
type string (read-write, required) Attribute type (“static”, “dynamic”, “actuator”)
value_type string (read-write, required) Attribute value type (“string”, “float”, “integer”, “geo”)
static_value string (read-write) If this is a static attribute, which is its static value
template_id string (read-write) From which template did this attribute come from.

All attributes that are read/write can be used when creating or updating the device. All of them are returned (if that
makes sense - for instance, static_value won’t be returned when no value is set to it) when retrieving device data.

An example of such structure would be:

{
"templates": [
1,
2

],
"created": "2018-01-05T17:33:31.605748+00:00",
"attrs": {
"1": [

{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",

(continues on next page)

4 Chapter 1. DeviceManager concepts

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

}
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"2": [

{
"static_value": "/admin/efac/attrs",
"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "mqtt-topic",
"value_type": "string",
"type": "meta",
"id": 4

}
]

},
"id": "b7bd",
"label": "device"

}

1.2 Template

All devices are created based on a template, which can be thought as a model of a device. As “model” we could think
of part numbers or product models - one prototype from which devices are created. Templates in dojot have one label
(any alphanumeric sequence), a list of attributes which will hold all the device emitted information, and optionally a
few special attributes which will indicate how the device communicates, including transmission methods (protocol,
ports, etc.) and message formats.

In fact, templates can represent not only “device models”, but it can also abstract a “class of devices”. For instance,
we could have one template to represent all themometers that will be used in dojot. This template would have only
one attribute called, let’s say, “temperature”. While creating the device, the user would select its “physical template”,
let’s say TexasInstr882, and the ‘thermometer’ template. The user would have also to add translation instructions in
order to map the temperature reading that will be sent from the device to a “temperature” attribute.

In order to create a device, a user selects which templates are going to compose this new device. All their attributes
are merged together and associated to it - they are tightly linked to the original template so that any template update
will reflect all associated devices.

The information model used for templates is:

1.2. Template 5

DeviceManager Documentation, Release 0.2.0

Table 1.3: Template structure
At-
tribute

Type and mode Description

id string (read-write) This is the identifier that will be used when referring to this template
label string (read-write, re-

quired)
An user label to identify this template more easily

cre-
ated

DateTime (read-only) Template creation date

up-
dated

DateTime (read-only) Template update date

attrs [Attributes] (read-
write)

List of attributes currently set to this template - it’s the same as attributes from
Device section.

An example of such structure would be:

{
"created": "2018-01-05T15:41:54.803052+00:00",
"attrs": [
{

"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{

"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"id": 1,
"label": "Sample Template"

}

All attributes that are read/write can be used when creating or updating the template. All of them are returned (if that
makes sense - for instance, static_value won’t be returned when no value is set to it) when retrieving device data.

6 Chapter 1. DeviceManager concepts

CHAPTER 2

Using DeviceManager

Using DeviceManager is indeed simple: create a template with attributes and then create devices using that template.
That’s it. This page will show how to do that.

All examples in this page consider that all dojot’s components are up and running (check the documentation for how
to do that). All request will include a ${JWT} variable - this was retrieved from auth component.

2.1 Creating templates and devices

Right off the bat, let’s retrieve a token from auth:

curl -X POST http://localhost:8000/auth \
-H 'Content-Type:application/json' \
-d '{"username": "admin", "passwd" : "admin"}'

{
"jwt": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIU..."

}

This token will be stored in bash ${JWT} bash variable, referenced in all requests.

Attention: Every request made with this token will be valid only for the tenant (user “service”) associated with
this token. For instance, listing created devices will return only those devices which were created using this tenant.

A template is, simply put, a model from which devices can be created. They can be merged to build a single device
(or a set of devices). It is created by sending a HTTP request to DeviceManager:

7

http://dojotdocs.readthedocs.io/
https://github.com/dojot/auth

DeviceManager Documentation, Release 0.2.0

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

"label": "SuperTemplate",
"attrs": [
{

"label": "temperature",
"type": "dynamic",
"value_type": "float"

},
{

"label": "pressure",
"type": "dynamic",
"value_type": "float"

},
{

"label": "model",
"type": "static",
"value_type" : "string",
"static_value" : "SuperTemplate Rev01"

}
]

}'

Supported type values are “dynamic”, “static” and “meta”. Supported value_types are “float”, “geo” (for geo-
referenced data), “string”, “integer”.

The answer is:

{
"result": "ok",
"template": {
"created": "2018-01-05T15:41:54.803052+00:00",
"attrs": [

{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{

"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,

(continues on next page)

8 Chapter 2. Using DeviceManager

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"template_id": "1"
}

],
"id": 1,
"label": "SuperTemplate"

}
}

Let’s create one more template, so that we can see what happens when two templates are merged.

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

"label": "ExtraTemplate",
"attrs": [
{

"label": "gps",
"type": "dynamic",
"value_type": "geo"

}
]

}'

Which results in:

{
"result": "ok",
"template": {
"created": "2018-01-05T15:47:02.993965+00:00",
"attrs": [

{
"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "gps",
"value_type": "geo",
"type": "dynamic",
"id": 4

}
],
"id": 2,
"label": "ExtraTemplate"

}
}

Let’s check all templates we’ve created so far.

curl -X GET http://localhost:8000/template -H "Authorization: Bearer ${JWT}"

{
"templates": [
{

"created": "2018-01-05T15:41:54.803052+00:00",
"attrs": [
{
"template_id": "1",

(continues on next page)

2.1. Creating templates and devices 9

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{
"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"id": 1,
"label": "SuperTemplate"

},
{

"created": "2018-01-05T15:47:02.993965+00:00",
"attrs": [
{

"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "gps",
"value_type": "geo",
"type": "dynamic",
"id": 4

}
],
"id": 2,
"label": "ExtraTemplate"

}
],
"pagination": {
"has_next": false,
"next_page": null,
"total": 1,
"page": 1

}
}

Now devices can be created using these two templates. Such request would be:

curl -X POST http://localhost:8000/device \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

(continues on next page)

10 Chapter 2. Using DeviceManager

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"templates": [
"1",
"2"

],
"label": "device"

}'

The result is:

{
"device": {
"templates": [

1,
2

],
"created": "2018-01-05T17:33:31.605748+00:00",
"attrs": {

"1": [
{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{
"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"2": [
{

"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "gps",
"value_type": "geo",
"type": "dynamic",
"id": 4

}
]

},
"id": "b7bd",
"label": "device"

(continues on next page)

2.1. Creating templates and devices 11

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

},
"message": "device created"

}

Notice how the resulting device is structured: it has a list of related templates (template attribute) and each of its
attributes are separated by template ID: temperature, pressure and model are inside attribute 1 (ID of the first
created template) and gps is inside attribute 2 (ID of the second template). The new device ID can be found in the id
attribute, which is b7bd.

A few considerations must be made:

• If the templates used to compose this new device had attributes with the same name, an error would be generated
and the device would not be created.

• If any of the related templates are removed, all its attributes will also be removed from the devices that were
created using it. So be careful.

Let’s retrieve this new device:

curl -X GET http://localhost:8000/device -H "Authorization: Bearer ${JWT}"

This request will list all created devices for the tenant.

{
"pagination": {
"has_next": false,
"next_page": null,
"total": 1,
"page": 1

},
"devices": [
{

"templates": [
1,
2

],
"created": "2018-01-05T17:33:31.605748+00:00",
"attrs": {
"1": [
{

"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{

"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",

(continues on next page)

12 Chapter 2. Using DeviceManager

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"2": [
{

"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "gps",
"value_type": "geo",
"type": "dynamic",
"id": 4

}
]

},
"id": "b7bd",
"label": "device"

}
]

}

2.2 Removing templates and devices

Removing templates and devices is also very simple. Let’s remove the device created previously:

curl -X DELETE http://localhost:8000/device/b7bd -H "Authorization: Bearer ${JWT}"

{
"removed_device": {
"templates": [

1,
2

],
"created": "2018-01-05T17:33:31.605748+00:00",
"attrs": {

"1": [
{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{
"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

(continues on next page)

2.2. Removing templates and devices 13

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

},
{
"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"2": [

{
"template_id": "2",
"created": "2018-01-05T15:47:02.995541+00:00",
"label": "gps",
"value_type": "geo",
"type": "dynamic",
"id": 4

}
]

},
"id": "b7bd",
"label": "device"

},
"result": "ok"

}

Removing templates is also simple:

curl -X DELETE http://localhost:8000/template/1 -H "Authorization: Bearer ${JWT}"

{
"removed": {
"created": "2018-01-05T15:41:54.803052+00:00",
"attrs": [

{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{

"template_id": "1",
"created": "2018-01-05T15:41:54.882169+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "SuperTemplate Rev01",
"created": "2018-01-05T15:41:54.883507+00:00",
"label": "model",

(continues on next page)

14 Chapter 2. Using DeviceManager

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

}
],
"id": 1,
"label": "SuperTemplate"

},
"result": "ok"

}

These are the very basic operations performed by DeviceManager. All operations can be found in API documentation.

2.3 Sending actuation messages to devices

You can invoke any device actuation via DeviceManager. In order to do so, you have to create some “actuator” at-
tributes in a template. They represent a function exposed by the physical device, such as setting the target temperature,
making a step-motor move a bit, resetting the device, etc. Let’s create a very similar template from Creating templates
and devices section and call it a ‘Thermostat’:

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

"label": "Thermostat",
"attrs": [
{

"label": "temperature",
"type": "dynamic",
"value_type": "float"

},
{

"label": "pressure",
"type": "dynamic",
"value_type": "float"

},
{

"label": "model",
"type": "static",
"value_type" : "string",
"static_value" : "Thermostat Rev01"

},
{

"label": "target_temperature",
"type": "actuator",
"value_type": "float"

}
]

}'

Note that we have one more attribute - target_temperature - to which we will send messages to set the target
temperature. This attribute could also have the same name as temperature with no side-effects whatsoever. If an
actuation request is received by dojot, only actuator-type attribute are considered.

2.3. Sending actuation messages to devices 15

api.html

DeviceManager Documentation, Release 0.2.0

This request should give an answer like this:

{
"result": "ok",
"template": {
"created": "2018-01-30T12:16:51.423705+00:00",
"label": "Thermostat",
"attrs": [
{

"template_id": "1",
"created": "2018-01-30T12:16:51.427113+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

},
{

"template_id": "1",
"created": "2018-01-30T12:16:51.429224+00:00",
"label": "pressure",
"value_type": "float",
"type": "dynamic",
"id": 2

},
{

"static_value": "Thermostat Rev01",
"created": "2018-01-30T12:16:51.430194+00:00",
"label": "model",
"value_type": "string",
"type": "static",
"id": 3,
"template_id": "1"

},
{

"template_id": "1",
"created": "2018-01-30T12:16:51.430870+00:00",
"label": "target_temperature",
"value_type": "float",
"type": "actuator",
"id": 4

}
],
"id": 1

}
}

Creating a device based on it is no different than before:

curl -X POST http://localhost:8000/device \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {
"templates": [

"1"
],
"label": "device"

}'

This gives back the following data:

16 Chapter 2. Using DeviceManager

DeviceManager Documentation, Release 0.2.0

{
"message": "devices created",
"devices": [
{

"id": "356d",
"label": "device"

}
]

}

To send a configuration message to the device, you should send a request like this:

curl -X PUT http://localhost:8000/device/356d/actuate \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

"attrs": {
"target_temperature" : 10.6

}
}'

The request payload contains only the following attribute:

• attrs: All the attributes and their respective values that will be configured on the device. Each value can be as
simple as a float or a string, or it could hold a more complex structure, such as an object.

Remember that the attribute must be an actuator for this request to succeed. If not, a message like the following one is
returned:

{
"status": "some of the attributes are not configurable",
"attrs": [
"pressure"

]
}

The request will be published via Kafka. All elements that are interested in device notifications (such as IoT agents),
will received it. What should be done with it is up to the component that processes this message. Check the documen-
tation of each component (in particular, from IoT agents) to check what is done with it.

2.3. Sending actuation messages to devices 17

DeviceManager Documentation, Release 0.2.0

18 Chapter 2. Using DeviceManager

CHAPTER 3

REST API

All APIs are available in Github pages API description, which is automatically generated from this file.

19

https://dojot.github.io/device-manager/apiary_latest.html

DeviceManager Documentation, Release 0.2.0

20 Chapter 3. REST API

CHAPTER 4

Internal messages

There are some messages that are published by DeviceManager through Kafka. These messages are notifications of
device management operations, and they can be consumed by any component interested in them, such as IoT agents.

Table 4.1: Kafka messages
Message Event Service
Creation message create dojot.device-manager.device
Update message update dojot.device-manager.device
Removal message remove dojot.device-manager.device
Actuation message actuate dojot.device-manager.device
Template update message (deprecated) template.update dojot.device-manager.device

4.1 Creation message

This message is published whenever a new device is created. Its payload is a simple JSON:

{
"event": "create",
"data": {

"label": "device",
"id": "56b7b1",
"created": "2019-01-07T12:21:22.016175+00:00",
"templates": [

1, 2, 3
],
"attrs": {

"1": [
{

"label": "a",
"id": 11,
"template_id": "1",

(continues on next page)

21

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"type": "dynamic",
"created": "2019-01-07T12:20:55.032796+00:00",
"value_type": "string"

},
{

"label": "b",
"id": 12,
"template_id": "1",
"type": "static",
"created": "2019-01-07T12:20:55.033423+00:00",
"value_type": "string",
"static_value": "b-attr value!"

}
],
"2": [

{
"label": "c",
"id": 13,
"template_id": "2",
"type": "dynamic",
"created": "2019-01-07T12:20:55.031381+00:00",
"value_type": "blingbling"

}
],
"3": [

{
"label": "d",
"id": 14,
"template_id": "3",
"type": "dynamic",
"created": "2019-01-07T12:20:55.032172+00:00",
"value_type": "string"

}
]

}
},
"meta": {

"service": "admin"
}

}

And its attributes are:

• event (string): “create”

• meta: Meta information about the message

– service (string): Tenant associated to this device

• data: device data structure

– id (string): Device ID

– attrs: Device attributes. This field is as described in DeviceManager concepts

22 Chapter 4. Internal messages

DeviceManager Documentation, Release 0.2.0

4.2 Update message

This message is published whenever a new device is directly or indirectly updated. The indirectly case happens when
a template associated with the device is updated. Its payload looks very similar to device creation:

{
"event": "update",
"meta": {
"service": "admin"

},
"data": {
"id": "efac",
"label" : "Device 1",
"templates" : [1, 2, 3],
"attrs" : {

"1": [
{

"label": "a",
"id": 11,
"template_id": "1",
"type": "dynamic",
"created": "2019-01-07T12:20:55.032796+00:00",
"value_type": "string"

},
{

"label": "b",
"id": 12,
"template_id": "1",
"type": "static",
"created": "2019-01-07T12:20:55.033423+00:00",
"value_type": "string",
"static_value": "new b-attr value!"

}
],
"2": [

{
"label": "c",
"id": 13,
"template_id": "2",
"type": "dynamic",
"created": "2019-01-07T12:20:55.031381+00:00",
"value_type": "blingbling"

}
],
"3": [

{
"label": "d",
"id": 14,
"template_id": "3",
"type": "dynamic",
"created": "2019-01-07T12:20:55.032172+00:00",
"value_type": "string"

}
]

},
"created" : "2018-02-06T10:43:40.890330+00:00"

(continues on next page)

4.2. Update message 23

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

}
}

• event (string): “update”

• meta: Meta information about the message

– service (string): Tenant associated to this device

• data: device new data structure

– id (string): ID of the device being updated

– attrs: Device attributes. This field is as described in DeviceManager concepts

4.3 Removal message

This message is published whenever a device is removed. Its payload is:

{
"event": "remove",
"meta": {
"service": "admin"

},
"data": {
"id": "efac"

}
}

• event (string): “remove”

• meta: Meta information about the message

– service (string): Tenant associated to this device

• data: device data

– id (string): ID of the device being removed

4.4 Actuation message

This message is published whenever a device must be configured. The payload is:

{
"event": "actuate",
"meta": {
"service": "admin"

},
"data" : {
"id" : "efac",
"attrs": {
"reset" : 1,
"step-motor" : "+45"

}
}

}

24 Chapter 4. Internal messages

DeviceManager Documentation, Release 0.2.0

• event (string): “actuate”

• meta: Meta information about the message

– service (string): Tenant associated to this device

This message should be forwarded to the device. It can contain more attributes than the ones specified by DeviceM-
anager. For instance, a thermostat could be configured with the following message:

{
"event": "configure",
"meta": {
"service": "admin",
"timestamp": 1557493697

},
"data" : {
"id" : "efac",
"attrs": {
"target_temperature" : 23.5

}
}

}

The attribute actually used by the device would be “target_temperature” so that it can adjust correctly the temperature.
It’s up to the receiver of this message (an IoT agent, for instance) to properly send the configuration to the device.

4.5 Template update message (deprecated)

This message is published whenever a template gets updated. It contains all the affected devices and the new model
for that template. Important thing to remember: no message is sent to update each device.

Its payload looks like:

{
"event": "template.update",
"data": {

"affected": [
"9c6f77"

],
"template": {

"label": "SuperTemplate",
"id": 1,
"created": "2019-01-07T12:03:47.051392+00:00",
"attrs": [

{
"label": "a",
"id": 3,
"template_id": "1",
"type": "dynamic",
"created": "2019-01-07T12:03:47.055768+00:00",
"value_type": "string"

},
{

"label": "b",
"id": 4,
"template_id": "1",
"type": "dynamic",

(continues on next page)

4.5. Template update message (deprecated) 25

DeviceManager Documentation, Release 0.2.0

(continued from previous page)

"created": "2019-01-07T12:03:47.056419+00:00",
"value_type": "string"

},
{

"label": "c",
"id": 6,
"template_id": "1",
"type": "dynamic",
"created": "2019-01-07T12:11:42.971507+00:00",
"value_type": "string"

}
]

}
},
"meta": {

"service": "admin"
}

}

• event (string): “template.update”

• data:

– affected: list of devices affected by this template update.

– template: new template definition

* label: new template label

* id: template id

* created: timestamp for template update

* attrs: Device attributes. This field is as described in DeviceManager concepts

• meta: Meta information about the message

– service (string): Tenant associated to this device

26 Chapter 4. Internal messages

CHAPTER 5

How to build/update/translate documentation

If you have a local clone of this repository and you want to change the documentation, then you should follow this
simple guide.

5.1 Build

The readable version of this documentation can be generated by means of sphinx. In order to do so, please follow the
steps below. Those are actually based off ReadTheDocs documentation.

pip install sphinx sphinx-autobuild sphinx_rtd_theme sphinx-intl
export READTHEDOCS_VERSION=latest
make html

The `READTHEDOCS_VERSION` environment variable should be set to the component version being built, such as
`latest` or `0.2.0`. In the automated build process from readthedocs, this exact variable will be set as the name
of the branch/tag being built.

For that to work, you must have pip installed on the machine used to build the documentation. To install pip on an
Ubuntu machine:

sudo apt-get install python-pip

To build the documentation in Brazilian Portuguese language, run the following extra commands:

sphinx-intl -c conf.py build -d locale
make html BUILDDIR=build/html-pt_BR O='-d build/doctrees/ -D language=pt_BR'

5.2 Update workflow

To update the documentation, follow the steps below:

27

https://docs.readthedocs.io/en/latest/getting_started.html

DeviceManager Documentation, Release 0.2.0

1. Update the source files for the english version

2. Extract translatable messages from the english version

make gettext

3. Update the message catalog (PO Files) for pt_BR language

sphinx-intl -c conf.py update -p build/gettext -l pt_BR

4. Translate the messages in the pt_BR language PO files

This workflow is based on the Sphinx i18n guide.

28 Chapter 5. How to build/update/translate documentation

http://www.sphinx-doc.org/en/stable/intl.html

CHAPTER 6

Dependencies

DeviceManager has the following dependencies:

• flask (including flask_sqlalchemy)

• psycopg2

• marshmallow

• requests

• gunicorn

• gevent

• json-logging-py

• kakfa-python

But you won’t need to worry about installing any of these - they are automatically installed when starting DeviceM-
anager. There must be, though, a postgres instance accessible by DeviceManager.

29

DeviceManager Documentation, Release 0.2.0

30 Chapter 6. Dependencies

CHAPTER 7

How to run

If you really need to run DeviceManager as a standalone process (without dojot’s wonderful docker-compose), you
can execute these commands:

python setup.py develop
gunicorn device-manager.app:app

Keep in mind that running a standalone instance of DeviceManager misses a lot of security checks (such as user
identity checks, proper multi-tenancy validations, and so on). In particular, every request sent to DeviceManager
needs an access token, which should be retrived from auth component.

31

https://github.com/dojot/auth

DeviceManager Documentation, Release 0.2.0

32 Chapter 7. How to run

CHAPTER 8

How to use it

There are a few concepts that must be understood to properly use DeviceManager. Visit DeviceManager Concepts
page to check them out.

This component listens to HTTP requests at port 5000 - all its endpoints are documented in the API page.

IMPORTANT: If you are using all dojot’s components (for instance, using a deploy based on docker-compose), it is
recommended to visit dojot documentation to check the endpoints for all services (including DeviceManager’s)**

33

concepts.html
concepts.html
api.html
https://github.com/dojot/docker-compose
http://dojotdocs.readthedocs.io/en/latest/apis.html

	DeviceManager concepts
	Device
	Template

	Using DeviceManager
	Creating templates and devices
	Removing templates and devices
	Sending actuation messages to devices

	REST API
	Internal messages
	Creation message
	Update message
	Removal message
	Actuation message
	Template update message (deprecated)

	How to build/update/translate documentation
	Build
	Update workflow

	Dependencies
	How to run
	How to use it

